
Vol.:(0123456789)

Automated Software Engineering (2023) 30:11
https://doi.org/10.1007/s10515-023-00376-y

1 3

AdaComplete: improve DL‑based code completion
method’s domain adaptability

Zejun Wang1,2 · Fang Liu3 · Yiyang Hao4 · Zhi Jin1,2

Received: 31 August 2022 / Accepted: 17 January 2023 / Published online: 6 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Code completion is an important feature in integrated development environments
that can accelerate the coding process. With the development of deep learning tech-
nologies and easy-to-acquire open-source codebases, many Deep Learning based
code completion models (DL models) are proposed. These models are trained using
the generic source code datasets, resulting in poor domain adaptability. That is,
these models suffer from performance loss when helping programmers code in a
specific domain, e.g., helping to decide which domain-specific API to call. To solve
the problem, we propose AdaComplete, a simple and effective framework that uti-
lizes a local code completion model to compensate DL models’ domain adaptabil-
ity. The local code completion model is trained using the source codes of the target
domain. When used in code completion, given the context, AdaComplete can adap-
tively choose the recommendations from either the DL model or the local code com-
pletion model based on our hand-crafted features. Experimental results show that
AdaComplete outperforms state-of-the-art DL-based code completion methods on
specific domains and can improve the accuracy by 7% on average.

Keywords Code completion · Neural network · N-gram · Model integration ·
Domain adaptability

1 Introduction

Code completion is a commonly used feature in Integrated Development Environ-
ments (IDEs) that can predict the next token given existing code in the context. It
is a critical tool in software development that benefits both quality and speed Bruch
et al. (2009). Early code completion researchmainly used rule-based methods Rob-
bes and Lanza (2010); Hou and Pletcher (2010) or statistical machine learning

 * Zhi Jin
 zhijin@pku.edu.cn

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-023-00376-y&domain=pdf

 Automated Software Engineering (2023) 30:11

1 3

11 Page 2 of 28

models Hindle et al. (2012); Tu et al. (2014); Nguyen et al. (2013) to perform code
completion. With the development of deep learning and easy-to-acquire open-source
code corpus, Deep Learning models (DL models) are generally used for code com-
pletion, for example, Recurrent Neural Network (RNN) and Transformer Allamanis
et al. (2018); Bhoopchand et al. (2016); Li et al. (2018); Liu et al. (2020b). In gen-
eral, a DL model for code completion is usually trained and tested on a large generic
source code dataset Karampatsis et al. (2020); Liu et al. (2020b). For example, Liu
et al. (2017) and Li et al. (2018) used 100k source code files for training and 50k
for testing. Karampatsis et al. (2020) built a model for the C programming language
based on 4,601 projects with 1.68B tokens. Liu et al. (2020b) trained and tested
their method on a Java dataset with 800,983 source code files. Feng et al. (2020)
used 2.1 M bimodal datapoints and 6.4 M unimodal codes across six programming
languages. Researchers believe the more data they feed, the better the DL models
would be.

However, current DL-based code completion models suffer from the perfor-
mance loss when applied to a specific domain due to lack of ‘Domain Adaptability’.
They might make wrong predictions on domain-specific code, e.g., the invocation
of domain-specific APIs. A domain in code completion refers to projects pointed
at similar tasks or based on the same programming framework. For instance, the
domain of ‘Face Recognition of Java’ refers to the Java projects that are used for
face recognition. The domain of ‘Spark’ comprises the projects that utilize the Spark
framework for large-scale data processing. The ‘adaptability’ means the ability of
the DL models trained on generic source codes to adapt to a specific domain.

To better illustrate the problem that current DL models lack domain adaptabil-
ity, we raise an example collected from GitHub in Fig. 1. The following Java code
comes from the domain ‘Fast Fourier Transformation (FFT).’ Compared to code
of other domains, this snippet involves many domain-specific APIs for FFT, for

Fig. 1 Example of lacking
domain adaptability

1 3

Automated Software Engineering (2023) 30:11 Page 3 of 28 11

instance, ‘real,’ ‘imag,’ ‘mag,’ and ‘ifft’. Here we use a GPT-2 Radford et al. (2019)
based code completion model TabNine Pro.1 In Fig. 1, we highlight the tokens that
TabNine fails to predict. TabNine’s wrong predictions are listed in the comments
right above the highlighted tokens. TabNine fails to predict the domain-specific
APIs: ‘real,’ ‘mag’ and ‘ifft.’On the contrary, TabNine gives predictions that are
irrelevant to the domain: ‘return,’ ‘minLength’ and ‘if.’ This example shows that the
DL-based code completion model, TabNine, fails to predict these domain-specific
tokens and cannot adapt well to the domain ‘FFT.’

It isn’t easy to use the fine-tuning technique to improve the DL models’ perfor-
mance on the specific domain, although using fine-tuning is intrinsic. Fine-tuning
means tuning the DL model’s parameters to fit the specific domain. To successfully
fine-tune a DL model, two conditions need to be fulfilled. The first one is the scale
of the dataset used for fine-tuning, and it is very difficult to fine-tune the huge DL
model on a dataset with limited scale Barone et al. (2017). The other one is the suf-
ficient training time and computation resources. However, it is hard to meet both
these requirements since the training data of a specific domain is always not big
enough, and the computation resources for academic researchers are also limited.

To improve the DL-based code completion models’ performance on specific
domains, we propose a novel general framework AdaComplete. It is light-weighted
and aims at compensating any DL models’ domain adaptability by integrating a
local domain-specific code completion method (local model in short for conveni-
ence). AdaComplete works as follows. Given the context, AdaComplete first pro-
duces the next token predictions from both the DL model and the local model. Then
we balance these predictions with rules and a series of hand-crafted features and use
the balanced result as the final prediction. AdaComplete is a general framework that
can be applied to any DL model for code completion. In this paper, we instantiate
AdaComplete with ‘Transformer-XL+N-Gram’. Transformer-XL network Dai et al.
(2019) is adopted to instantiate the DL model following Liu et al. (2020a). As for
the local model, we instantiate it with an N-gram model, which is trained on the
domain-specific source code dataset.

To prove that AdaComplete can improve DL models’ performance on a spe-
cific domain, we build several domain-specific datasets which are collected from
GitHub.2 Then we compare AdaComplete with several state-of-the-art DL-based
code completion models on our proposed domain-specific datasets. We use predic-
tion accuracy to evaluate the models’ performance. Experimental results demon-
strate that AdaComplete outperforms the state-of-the-art generic code completion
methods by a large margin. Besides, we also conducted experiments to compare
AdaComplete with Fine-tuning techniques. The results show that AdaComplete can
outperform Fine-tuning techniques while taking less time.

The main contribution of this paper is summarized as follows:

1 https:// www. tabni ne. com/.
2 https:// github. com/.

https://www.tabnine.com/
https://github.com/

 Automated Software Engineering (2023) 30:11

1 3

11 Page 4 of 28

• We are the first to raise the issue that DL-based code completion models suf-
fer from performance loss when directly used for completing domain-specific
source code.

• We propose AdaComplete, a novel method to increase the overall code com-
pletion accuracy via the light-weighted integration of a local domain-specific
model.

• We create several Java domain-specific datasets, which can be used to evaluate
the domain adaptation capability of the code completion model. The datasets are
publicly available and are shared through Figshare.3

• We evaluate AdaComplete on the domain-specific datasets and compare it with
several state-of-the-art generic code completion methods and Fine-tuning tech-
niques. The results show that AdaComplete can outperform all the baselines by a
large margin.

The reminder of this paper is organized as follows: Sect. 2 is the empirical study
to investigate our motivation. Section 3 presents the background of this paper. Sec-
tion 4 is the detailed description of AdaComplete, including the overall framework
and description of AdaComplete’s modules. Section 5 shows our experimental
results and analysis. Section 6 is our case study to prove AdaComplete’s effect by
cases. Section 7 discusses method generalization, threats to validity, and how to
choose pointer models. Section 8 describes the related work of deep code comple-
tion. Section 9 gives the conclusion of this paper.

2 Empirical study

In this section, we conducted an empirical study to investigate our motivation that
current DL-based code completion models lack domain adaptability, resulting in
performance loss when applied to a specific domain.

2.1 Domain‑specific projects and generic projects

A project is a domain-specific project when we emphasize that it is developed
for a specific task or is built on one or multiple specific programming frame-
works, as introduced in the previous section. Under this definition, each project is
domain-specific.

On the contrary, we have the concept of generic project and generic domain. The
generic domain is an alias of ‘cross-domain’ for better narration. When we refer to
a generic domain, we do not consider the corresponding projects’ tasks or frame-
works. For example, in this paper we use a dataset on the generic domain, we mean
that this dataset is cross-domain. The projects within are collected randomly, cover-
ing various tasks and frameworks. Furthermore, when we refer to a generic project,

3 https:// figsh are. com/s/ c0bd0 430cd 4134a b07f4.

https://figshare.com/s/c0bd0430cd4134ab07f4

1 3

Automated Software Engineering (2023) 30:11 Page 5 of 28 11

we mean the project belongs to the generic dataset and is collected randomly with-
out considering its tasks and programming framework.

For our experiments, we collect four domain-specific datasets. Besides, the
experiments involve a generic domain dataset from previous works. We select the
domains carefully to guarantee that there is no overlapping between the domain-
specific datasets and the generic domain dataset by checking the source code files

2.2 Identify domain‑specific projects

For our experiments, we investigate the following four domains:

• jMonkeyEngine: Projects built on a game engine named ‘jMonkeyEngine’
• jFaceRec: Projects built for face recognition but built on Java
• CodeGeneration: Projects built for auto code generation
• j2me: Projects built based on the platform j2me

To create the datasets for the domains, we search GitHub with the domain’s name
as keywords. We sort the matched projects by their stars, download the high-starred
repositories manually and check the contents manually. Then we filter the files and
keep the source code files only.

We choose these domains for the following reasons: Their clear boundaries make
it easier for us to validate whether our crawled projects belong to these domains. The
projects of these domains are helpful in our real life; thus, the experiment results
from these projects are meaningful. These projects are rare, contributing little to the
cross-domain datasets for training the DL-based code completion model. As a result,
these domains can reveal the significant differences between the cross-domain and
domain-wise performance.

2.3 Experiments and results

To verify our assumption, we evaluate the following state-of-the-art deep code com-
pletion models on the four specific domains

Table 1 Accuracy comparison on the generic domain and specific domains

The bold numbers in the Table means ‘the best’

Generic models Accuracy on datasets

Generic (%) jMonkeyEn-
gine (%)

jFaceRec (%) CodeGenera-
tion (%)

j2me (%)

Transformer-xl 72.12 62.16 71.33 64.51 61.23
BPE 70.29 59.12 69.89 57.56 43.23
CugLM 84.06 75.19 74.84 74.65 67.66

 Automated Software Engineering (2023) 30:11

1 3

11 Page 6 of 28

• Transformer-XL Dai et al. (2019): a self-attentional neural network-based lan-
guage model for code completion.

• BPE Karampatsis et al. (2020): a GRU-based neural language model for code
completion, which leverage Byte Pair Encoding (BPE) Gage (1994) algorithm
to address the OoV (Out-of-Vocabulary) problem.

• CugLM Liu et al. (2020b): A Transformer-based pre-trained language model
for code completion, which achieves state-of-the-art results.

The completion accuracies of these models are shown in Table 1. The results on
the generic-domain dataset are also listed in the ‘generic’ column, and the other
data columns are the domain-specific datasets’ results.

According to Table 1, the accuracies of all the three DL models drop by 10%
on average when applied to the domain-specific datasets. These results strongly
support our motivation that current DL code-completion models are short of
domain adaptability.

3 Background

3.1 Domain adaptability & domain shift

The domain adaptability is the ability for DL models to deal with domain shift,
i.e., the difference of data distribution across the domains. So we introduce the
background knowledge of domain shift here for readers to better understand the
problem.

We borrow the annotations from Wang et al. (2021) to clarify the concept of
‘domain’ and ’domain shift’ with formulas. Suppose that we have an input space
X , an output space Y and a joint distribution PXY . With PXY , we draw N data points
from X and Y , then build a multi-set S {(xi, yi)}Ni , where xi ∈ X and yi ∈ Y . We
name S a domain. For convenience, we call PXY the ‘drawing distribution.’ Further,
we define the domain shift of two domains as the difference between their drawing
distributions.

Domain shift severely damages the performance of data-driven-based methods in
many research fields. Different fields have different methods to alleviate the domain
shift. For example, Saenko et al. (2010) discussed domain shift in the context in
object recognition. They adapted models to a new domain by learning a transforma-
tion that minimizes the difference in feature space. Kuang et al. (2020) focused on
distribution in regression tasks. They presented a Decorrelated Weighting Regres-
sion (DWR) algorithm. DWR jointly optimizes a variable decorrelation regular-
izer and a weighted regression model. Kamath et al. (2020) found that QA systems
make mistakes in unknown domains. So the authors designed a calibrator to monitor
the QA system. When the QA system was going to make mistakes in the unknown
fields, the calibrator would abstain from giving answers.

In the field of code completion, we are the first to discuss the threat of domain
shift. The generic source code dataset forms a ‘generic domain’. And the domain

1 3

Automated Software Engineering (2023) 30:11 Page 7 of 28 11

shift between the generic domain and the specific domain causes the performance
loss of the DL-based code completion models.

3.2 Transformer‑XL

Transformer-XL Dai et al. (2019) is a powerful language model, which has been
used as the base architecture or the strong baselines in many code completion
research Liu et al. (2020a, b); Wang and Li (2021), which is also used in AdaCom-
plete. Transformer-XL brings the recurrent mechanism to Transformer and a novel
way for positional embedding. Compared with RNN and vanilla Transformer, it can
capture longer dependency from the input sequences. Besides, The evaluation pro-
cess is also much faster than vanilla Transformer. As for the performance, the Trans-
former-XL improves the state-of-art results of bpc/perplexity on many language
modeling benchmarks, including enwiki8, text8, WikiText-103, One Billion Word,
and Penn Treebank (without fine-tuning).

Unlike the vanilla Transformer, Transformer-XL involves the recurrent mecha-
nism. It caches the previous hidden states. These hidden states join the computation
of the hidden states as the key and value vectors directly or after some transforma-
tions. Suppose we have two consecutive segments of length L be s� and s�+1 that
are adjacent temporarily. Denoting the n-th layer hidden state produced for s� by
hn
�
∈ ℝ

L∗d , where d is the hidden dimension. Then, the n-th layer hidden state for
segment s�+1 is produced as follows:

where SG(⋅) stands for ‘Stop Gradient’, [ha◦hb] stands for concatenating two matrix
ha and hb along the temporal axis and W. denotes model parameters. Then Trans-
former-XL uses the encoding matrix to represent the relative distances. Concretely
speaking, the unnormalized attention score from position i to position j is:

where Wn
k,R
, u, v are learnable parameters and R is the sinusoid encoding matrix.

Learning the relative positions of the tokens is also important for code completion
task, thus we also use the relative positional embedding in our model.

3.3 N‑gram language model

The ‘N-gram language model’ is a model that estimates the appearing proba-
bilities of all N-token tuples in the language by counts. And we call the N-token

(1)

�h
n−1

𝜏+1
= [SG(hn−1

𝜏
◦hn−1

𝜏+1
)],

qn
𝜏+1

, kn
𝜏+1

, vn
𝜏+1

= hn−1
𝜏+1

W⊤

q
,�h

n−1

𝜏+1
W⊤

k
,�h

n−1

𝜏+1
W⊤

v
,

hn
𝜏+1

= Transformer − Layer(qn
𝜏+1

, kn
𝜏+1

, vn
𝜏+1

).

(2)An
𝜏,i,j

= qn⊤
𝜏,i
kn
𝜏,j

+ qn⊤
𝜏,i
Wn

k,R
��−� + u⊤k𝜏,j + v⊤Wn

k,R
Ri−j

 Automated Software Engineering (2023) 30:11

1 3

11 Page 8 of 28

tuple ’the N-gram’. Given an N-gram model ML for language L and an N-gram
s = w1,w2,…wN , we can get the appearing probability of s: pL(s) = ML(s).

With Markov Assumption, N-gram model can predict the next token based on
N − 1 most recent tokens. For a sequence w1,w2,… ,wi−1 and any candidate predic-
tion wi , the Markov Assumption tells us

Because p(wi−N+1,… ,wi−1) is constant, we only need to estimate
p(wi,wi−N+1,… ,wi−1) for all possible wi and pick up the wi with the largest value.
We can use the N-gram language model to estimate the values:

N-gram models need smoothing methods to help improve their generalization. It is
crucial because many N-grams could not be observed in the training corpus. Given
the previous N − 1 tokens, if the N-gram formed by word w and the context has not
been observed, word w will never have the chance to be the output. This phenom-
enon harms N-gram models’ generalization ability. To deal with this issue, research-
ers use linear interpolation to calculate the probabilities rather than counting directly
Chen and Goodman (1999). Generally, following Brown et al. Brown et al. (1992),
we have the following expression:

where �� is the context of length i, �N is the N’s confidence score and p0(w‖xN−1) is
the discounted probability of order N − 1 that estimated directly from the counts. In
this way, p is calculated recursively and stops when the context is empty.

Methods vary in the way of calculating �N . For example, Hellendoorn and
Devanbu (2017) use the Jelinek-Mercer smoothing method in their code com-
pletion model, whose confidence scores are all 0.5. Witten-bell considers how
likely a few particular words follow a context. The more likely the situation is,
the higher the confidence score.

4 AdaComplete

4.1 Overall framework

To compensate the DL models’ domain adaptability, we propose AdaComplete, a
generic light-weighted framework that integrates the DL-based code completion
model with a domain-specific local code completion model. It balances the pre-
dictions of the DL model and local model by our designed hand-crafted features.
Firstly, we briefly define two main concepts in our model.

Generic Model A generic model is the DL-based code completion model
for which we want to compensate the domain adaptability. It is called ‘generic’

(3)p(wi‖w1,w2,… ,wi−1) = p(wi‖wi−N+1,… ,wi−1)

(4)p(wi,wi−N+1,… ,wi−1) = ML(wi,wi−1,… ,wi−N+1)

p(w‖xN−1) = �Np0(w‖xN−1) + (1 − �N)p(w‖xN−2)

1 3

Automated Software Engineering (2023) 30:11 Page 9 of 28 11

because it is trained on the source code from the ‘generic domain.’ And the
‘generic domain’ is defined in Sect. 3.1.

Local Model A local model is a code completion model to compensate the
generic model’s domain adaptability. It is called ‘local’ because it is built on the
local domain-specific dataset.

Algorithm 1 AdaComplete Overall Framework
Context: x
Data: generic model MT , N-gram Language Model MN , Pointer Model MP

Output: Prediction wo

wT ⇐ MT (x)
wN ⇐ MN (x)
if wT == wN then

wo ⇐ wT � Rule r1
else if wT is OOV then

wo ⇐ wN � Rule r2
else

hT is the inner state of MT when generating wT ;
hN is the inner state of MN when generating wN ;
c ⇐ Mp(hT , hN);
if c == MT then

wo ⇐ wT

else if c == MN then
wo ⇐ wN

else
wo ⇐ NULL

end if
end if

We instantiate the generic model with Transformer-XL and the local model
with the N-gram model. We present AdaComplete’s overall framework in Algo-
rithm 1. The working process is also illustrated in Fig. 2. We have a generic

Fig. 2 AdaComplete overall
architecture

 Automated Software Engineering (2023) 30:11

1 3

11 Page 10 of 28

model and a local N-gram code completion model in the framework. We bal-
ance their outputs to get the final prediction. In detail, we collect the two models’
predictions and hidden states given the code context. Then we use the following
workflow to produce the final prediction as the final output:

• r1 (Same Output Check): If wT = wN , that is, the outputs from MT and MN are
the same, we just use wT to be the output. Else we move on to r2.

• r2 (OOV Output Check): If wT is Out of the Vocabulary (OoV), which is a mean-
ingless token that cannot satisfy the users need, we use wN as the output as it has
the chance to be the correct prediction. Else we move on to use Mp.

• Mp (The Pointer Model): Mp is a simple classifier that takes part of the inner
states of MT and MN as its input and decides which output to choose. Signifi-
cantly, if Mp thinks that both of the outputs are wrong, it will tell the programmer
that the code completion tool can not give a correct prediction.

In the following subsection, we will introduce the components of AdaComplete in
detail.

4.2 Model instantiation

We use the Transformer-XL network Dai et al. (2019) as the generic DL model,
which is a powerful language model and has been used as the base architecture or
the strong baselines in many code completion research Liu et al. (2020a, 2020b);
Wang and Li (2021). We train our Transformer-XL with the cross-domain dataset
from Liu et al. (2020b).

For the local model, we apply the N-gram language model to summarize the local
data distribution based on the local vocabulary. It is light-weighted to build and is
friendly to a personal computer running an IDE. As it can handle extensive vocabu-
lary, it helps deal with the OoV problem. Besides, Hellendoorn and Devanbu (2017)
proves that the N-gram model can have acceptable accuracy performance in small
datasets compared with DL-based code completion models.

To train the local model, first, we need to download the N-gram toolkit from the
GitHub repo of Hellendoorn and Devanbu (2017).4 Then we split the dataset of one
domain into three splits for training, validation, and test. We use the training split
to train the local N-gram model, following the instructions on the toolkit’s GitHub
homepage. We use Jelinek-Mercer smoothing method in the N-gram model follow-
ing Hellendoorn and Devanbu (2017).

4.3 Pointer model

We design a pointer model to balance the outputs of the generic and local mod-
els. The pointer model is a classification model. It takes a few specifically designed

4 https:// github. com/ mast- group/ OpenV ocabC odeNLM.

https://github.com/mast-group/OpenVocabCodeNLM

1 3

Automated Software Engineering (2023) 30:11 Page 11 of 28 11

features as its input and adaptively chooses the output from MT and MN , the same as
classifying the situations. In the following sections, we introduce our designed input
features, the labels for classification and the choices of the model instantiation.

4.3.1 Input features of the pointer model

We use the confidence scores of both the generic and local N-gram models as the
features. The confidence score is the name for a group of metrics. These metrics
measure how likely the models believe that their predictions are correct.

We choose confidence scores as the features for the following reasons: (1) The
confidence score suggests the possibility for a model to make mistakes. The lower
the confidence score, the more chance a model will make mistakes Corbière et al.
(2019). (2) The confidence score is data-free. It is unrelated to the actual form
of inputs and the ground truth, and only cares about the inner states of the deep
model and N-gram model. Thus the input’s space is narrowed, and the training is
simplified. (3) They are expandable. Model Confidence is crucial because it helps
increase an AI system’s robustness by warning the user when the model is not
confident about its output and needs human intervention. As for the relevance to
choosing the prediction, it is proved by our experiments in the following section.

For the actual features of the confidence scores, we first introduce the features
that could be extracted from both the generic and local model. We extract the
models’ maximum class probability Corbière et al. (2019) and output distribu-
tion entropy. Then we introduce the features individually designed for each of the
models. For N-gram, we follow Bakhtin et al. (2018) and extract each order’s dis-
count probabilities as the features. And for Transformer-XL, we design the confi-
dence score based on the attention scores. We use each of the last layer’s attention
head entropy summarized from the normalized attention score as the additional
confidence measurements. This design is originated from the motivation of self-
attention. The model is supposed to pay attention to a few tokens. If the attention
scores are averaged over the previous inputs, the model has no clue about what to
focus on, that is to say, lacking confidence. The Shannon Entropy is an excellent
way to estimate the confidence scores.

The computation of the Transformer-XL’s confidence score is illustrated
below. For the token in position i, we denote its unnormalized attention scores of
one attention head:

Then we use a softmax function to normalize the attention score ��,� and calculate
the entropy:

(5)Ãi,j = An
�,i,j

 Automated Software Engineering (2023) 30:11

1 3

11 Page 12 of 28

If we denote the attention head as k, we can rewrite the entropy as Ek
i
.

All the features are summarized as follows:

• DP-NG: The discount probabilities of the N-gram model.
• MCP-NG: The maximum class probability generated by the N-gram
• VENT-NG: The entropy of the probability distribution over the vocabulary gen-

erated by the N-gram
• HENT-TX: The multi-head attention score entropy of the Transformer-XL lan-

guage model
• MCP-TX: The maximum class probability generated by the Transformer-XL lan-

guage model
• VENT-TX: The entropy of the probability distribution over the vocabulary gen-

erated by the Transformer-XL language model

4.3.2 Output labels of the pointer model

Finally, we introduce the output labels of our pointer model. The outputs of the
pointer model are divided into three classes: (1) NN ONLY: The prediction of
the generic model is correct while that of the N-gram model is not; (2) N-GRAM
ONLY: The prediction of the N-gram model is the correct while that of the generic
model is not; (3) BOTH BAD: Both of the predictions are wrong.

4.3.3 Choices of the pointer model

To make AdaComplete both light-weighted and effective, In this paper, we choose
two statistical classifiers as the pointer model: the Support Vector Machine, the Ran-
dom Forest.

(1) Support Vector Machine (SVM) Cortes and Vapnik (1995) proposed SVM as a
robust linear classifier. It inserts a maximum-margin hyperplane to divide differ-
ent kinds of data points. We consider SVM because training SVM is very simple.
Because it is a convex optimization problem, then convergence is guaranteed.

(2) Random Forest (RF) The Random Forest Model is a statistical classification
model of ensemble learning first introduced by Ho (1995). The model builds
decision trees using the Bagging strategy. However, the bagging strategy is not
only applied to the data points but also the features. When predicting, the major-
ity of the votes is the final result. We consider RF because it can decrease the

(6)

pi,j =
eÃi,j

∑
k e

Ãi,k

Ei =
�

j

pi,jlog(
1

pi,j
)

1 3

Automated Software Engineering (2023) 30:11 Page 13 of 28 11

variance without increasing the bias thanks to the ensemble mechanism. Besides,
constructing decision trees is simple.

4.3.4 Build and use the pointer model

To build the pointer model, we first run the inference process of both the generic
model and the local model on the validation split of the domain-specific dataset. We
collect their intermediate states during the inference and extract the features intro-
duced in 4.3.1. After the inference, we compare the models’ output with the ground-
truth and build labels according to 4.3.2. The situations can be summarized into
three classes as introduced in 4.3.2. In practice, we use integers to represent these
situations, 0 for NN ONLY, 1 for NGRAM ONLY, 2 for BOTH BAD. As a result,
we create a dataset for the pointer model. We use this dataset to train the pointer
model in the same way as training a classification model.

To put the pointer model into use, given the previous code x, we input x into both
the generic and local models to get their inputs and intermediate states. Then we
extract features from these states and input them into the local model to get its out-
put. If the output is 0, we use the generic model’s output; if the output is 1, we use
the local model’s output. Otherwise (the output is 2), we warn the user that both the
outputs are wrong and the prediction is failed.

5 Experiments and analysis

5.1 Baselines

To prove AdaComplete’s effectiveness, except for Transformer-XL, we introduce
another two state-of-the-art generic models as our baselines. These code completion
models incorporate specific techniques to modify the simple Transformer-family-
based deep code completion models. They are stronger than the Transformer-XL-
based code completion model we use in AdaComplete. One is GRU BPE (BPE for
short) Karampatsis et al. (2020) from ICSE 2020. This work uses the BPE technique
to represent tokens. The other is CugLM Liu et al. (2020b) from ASE 2020, which
uses the multi-task technique to pre-train their Transformer backend. These base-
lines cover the main technology trends of code completion: BPE, Transformer, and
Pre-training.

5.2 Data preparation

The generic dataset used for training the generic model is the Java dataset used by
Liu et al. (2020b), and we call it Java_full. It is a large dataset with 9708 projects
and 800,983 files. To reproduce the testing results, we follow the partition scheme

 Automated Software Engineering (2023) 30:11

1 3

11 Page 14 of 28

described in Liu et al. (2020b) that 94% of the projects go to the training set and the
rest are equally divided for validation and test.

The local dataset is the collection of projects in one specific domain. We choose
four domains and collect projects in each domain correspondingly to form four
domain-specific datasets. The domains are:

• jFaceRec: Java projects about face recognition
• jMonkeyEngine: Java projects about a game engine called jMonkeyEngine
• CodeGeneration: Java projects about automatic code generation
• j2me: Java projects about j2me

All the projects in these datasets are collected from the public open-source GitHub
repositories. We exclude the files that appear in Java_full. After filtering, we reserve
projects with more than one source file and tokenize each program into a token
sequence with Python package javalang. Then we randomly permute each project’s
files and split them into the training, validation, and test sets. We list the statistics
about the datasets in Table 2.

5.3 Experimental setup

5.3.1 Experiment procedure

The experiment procedure is divided into the following steps:

• Step 1: We train a Transformer-XL-based deep code completion model on a
global dataset.

• Step 2: We choose a domain and draw a local dataset from it.
• Step 3: We train an N-gram language model on the train part of the local dataset.
• Step 4: We train the pointer models on the validation part of the local dataset. All

modules in AdaComplete are ready.
• Step 5: We test AdaComplete and the baselines on the test part of the local data-

set then compare the results.

Table 2 Statistics of the collected datasets

Train_token Valid_token Test_token Unk rate (%)

jMonkeyEngine 666,019 291,465 248,495 23.00
jFaceRec 119,8077 542,909 447,096 23.70
CodeGeneration 1,583,434 638,783 494,019 24.34
j2me 2,126,631 929,536 967,579 30.54

1 3

Automated Software Engineering (2023) 30:11 Page 15 of 28 11

5.3.2 Models and parameters

We describe the models and their configurations in this section.
Generic Models Because we use the dataset in Liu et al. (2020b) as the generic

dataset to train these baselines, and these baseline methods are also tested in Liu
et al. (2020b), we directly follow their model setup. We utilize a Transformer-XL
implemented by HuggingFace5 with 6 layers, 516-dimensional hidden states, and 6
attention heads. The hidden inner size of the feed-forward layer is 3072. The mem-
ory length is 256. For GRU BPE, we set the hidden size to be 1500, and the other
part in their code unchanged.6 As for CugLM, because it involves pre-training and
its training process is complex, we directly employ their implementation and model
setup.7

Local N-gram Model Our implementation of the local N-gram model is a modi-
fication of Hellendoorn’s implementation Hellendoorn and Devanbu (2017).8 We
get the N-gram model’s inner states as mentioned in the method. Besides that, eve-
rything is the same as they were. Following the setup reported in Hellendoorn and
Devanbu (2017), we use the Jelinek-Mercer smoothing method and set the N-gram
order as 6.

Statistical Classifier The SVM and the Random Forest are implemented by
Pedregosa et al. (2011). For both models, we use their default structure.

5.3.3 Experimental environment

We used 2 NVIDIA Tesla V100 GPUs to train our generic Transformer-XL, CugLM,
and BPE model. Our CPU is Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz. For
the Random Forest, we manually set its parallel jobs as 16. For the other implemen-
tations of the pointer model, the numbers of parallel jobs are the same as the default.

5.3.4 Metrics

We use top-1 accuracy as the metric, matching accuracy between the oracle and the
token predicted with the highest probability. If the baselines think their output is
OOV, we regard this prediction as a failure.

5.3.5 Vocabulary

The vocabularies for the generic models and the local N-gram language model
are different. We built the vocabulary for the generic models based on the training
set of Java_full. We followed Liu et al. (2020b) to keep the most frequent 50,000
tokens. We built the N-gram language model’s vocabulary based on these local
datasets’ training parts and kept every token we met. Based on the generic models’

5 https:// huggi ngface. co/ trans forme rs/ index. html.
6 https:// github. com/ mast- group/ OpenV ocabC odeNLM.
7 https:// github. com/ LiuFa ng816/ CugLM.
8 https:// github. com/ SLP- team/ SLP- Core.

https://huggingface.co/transformers/index.html
https://github.com/mast-group/OpenVocabCodeNLM
https://github.com/LiuFang816/CugLM
https://github.com/SLP-team/SLP-Core

 Automated Software Engineering (2023) 30:11

1 3

11 Page 16 of 28

vocabulary, we counted the frequency of the OOV words of the local datasets,
denoted as ‘unk rate’. These statistics are presented in Table 2.

5.4 Research questions and results

To evaluate our method, we conducted experiments to investigate the following
research questions:

• RQ1: Performance Upper Bound The proposed method does not change the
outputs of the generic and local models. It just learns to choose from the
predictions. AdaComplete can achieve the upper bound of the performance
if it can always select the suitable model, and we compute the upper bound
performance in this research question.

• RQ2: Overall Method Performance We propose AdaComplete to improve the
performance of the generic code completion model. So we conduct experi-
ments to compare AdaComplete with the baselines that do not utilize Ada-
Complete.

• RQ3: Contribution of Each Component AdaComplete utilizes two rules and
one pointer model to make the choices. How much does each of them con-
tribute to the overall performance?

• RQ4: Difference among Pointer Models We propose two kinds of pointer
models: the SVM and the RF with the corresponding reasons. What are their
performances individually? What causes these differences?

• RQ5: Comparison with Fine-tuning To adapt the generic model to a specific
domain, using fine-tuning is intrinsic. However, we analyze that applying
fine-tuning is difficult because of lacking training data. Besides, fine-tuning
consumes too much time. So we design experiments to prove our analysis.

5.4.1 RQ1: performance upper‑bound

To calculate the performance upper-bound of AdaComplete in each domain, we
assume that we have a perfect pointer model which can make every choice cor-
rectly. Then we calculate the accuracy based on the perfect pointer model.

Table 3 Upper-bound statistics Generic only (%) Upper bound (%)

jFaceRec 71.33 87.11
jMonkeyEngine 62.16 80.62
CodeGeneration 64.51 79.66
j2me 61.23 80.19

1 3

Automated Software Engineering (2023) 30:11 Page 17 of 28 11

We report the upper-bounds of every dataset’s test set in Table 3. They are
presented in the ‘UPPER BOUND’ column, while the second column shows the
base deep code generator’s actual performance, that is, the performance only
using the generic model.

According to Table 3, we find that if our pointer models are perfect, AdaCom-
plete can bring improvements by 20% on average. It is nearly one-third of the
original accuracy performance. Besides, the portion of tokens in the charge of
the pointer model is not small. Thus carefully designing and training the pointer
models are necessary.

5.4.2 RQ2: overall method performance

We compare our model with several state-of-the-art code completion baselines, and
the results are shown in Table 4. The first four rows are for the three baseline generic
models and our local N-gram model. The following four lines are for our method,
AdaComplete. The first one of them is for the upper-bounds reported in Table 3, and
the others are for AdaComplete with different pointer models: SVM, and Random
Forrest (RF).

According to Table 4, all of the implementations of AdaComplete have outper-
formed the generic baselines and the local N-gram model in accuracy on all the
four domain-specific datasets.. Compared with the best method of the baselines, our
improvements range from the percentage of 3 to 12. Considering that the generic
model is based on a Transformer-XL without training tricks and AdaComplete
can still beat the strong baseline of CugLM, the effectiveness of AdaComplete is
convincing.

Specifically, we conduct experiments on cross-domain level datasets. We pre-
sent the results in column ‘generic.’ We find that our local N-gram model has rela-
tively poor performance for the projects in the generic domain compared with the
generic DL-based model. Thus, the upper bound of AdaComplete is low. Moreover,
the automatic pointer model limits the overall performance since they can not avoid

Table 4 Comparisons against the state-of-the-arts

The bold numbers in the Table means ‘the best’

Accuracy on datasets

Generic (%) jMonkey-
Engine
(%)

jFaceRec (%) CodeGen-
eration
(%)

j2me (%)

Baselines Transformer-xl 72.12 62.16 71.33 64.51 61.23
BPE 70.29 59.12 69.89 57.56 43.23
CugLM 84.06 75.19 74.84 74.65 67.66
N-gram 40.26 65.68 81.35 63.99 61.47

AdaComplete UPPER-BOUND 74.86 80.62 87.11 79.66 80.19
AdaComplete(svm) 72.12 76.90 86.57 77.88 78.80
AdaComplete(rf) 72.12 78.43 86.93 77.97 78.84

 Automated Software Engineering (2023) 30:11

1 3

11 Page 18 of 28

making mistakes (Tabel 11). So following the design principle of AdaComplete,
we force the pointer to choose the generic DL-based model. So as reported in the
chart, the performance of AdaComplete is equal to the generic DL-based model,
transformer-XL.

5.4.3 RQ3: contribution of each component

In the overall picture, we have shown that our method is effective. We further evalu-
ate the performance of each component of AdaComplete (two rules and one pointer
model) in this research question.

Each of the three components contributes to the final result of the accuracy,
and we list the results in Table 5. They are (1) Rule 1: Whether the outputs are
the same; (2) Rule 2: Whether the output from the generic model is OOV; (3) The
Pointer Model. Except for Column ‘NN-ONLY,’ all the numbers are all the per-
centages of the successfully predicted tokens by the modules. Column ‘SAME’
is for Rule 1: If the predictions are the same, just give it to the user. Column
‘UNK’ is for Rule 2: If the generic model thinks the prediction is OOV, just use
N-gram’s output as the final prediction. Columns of ‘POINTER’ are for the three
types of pointer models. As for Column ‘NN-Only,’ it is the percentage of the
correct predictions if we do not use the pointer model and the N-gram language
model. We list it here for comparison and hope that the maximum number of the
pointer models on each dataset can exceed the numbers in ‘NN-ONLY.’ If so, the
pointer model is effective, or it would be better to keep using the generic model’s
predictions. Based on the results, we have the following analysis.

• Rule 1 contributed the largest proportion of the overall accuracy. Therefore,
though add a rule makes AdaComplete complicated compared with simply
utilizing the pointer model, it is still worthy. The pointer model can not avoid
making mistakes. By adding Rule 1, we reduce much deadweight loss.

• The contribution of Rule 2 reveals AdaComplete’s ability to solve the OOV
problem. Besides, it emphasize the importance of solving the OOV problem
in code completion. Because it can increase the performance upper-bound of
deep code completion models.

Table 5 Absolute accuracy contributed by the components

The bold numbers in the Table means ‘the best’

SAME (%) UNK (%) Pointer

SVM (%) RF (%) NN-ONLY (%)

jMonkeyEngine 47.37 12.03 16.49 19.03 14.94
jFaceRec 65.62 13.40 7.55 7.91 5.77
CodeGeneration 48.84 10.60 18.43 18.52 15.67
j2me 42.52 15.75 20.54 20.58 18.72

1 3

Automated Software Engineering (2023) 30:11 Page 19 of 28 11

• The contribution of the pointer model is greater than the original deep code
completion model. The result not only proves that the pointer model is effec-
tive, but further confirm the existence of domain shift in code completion.

5.4.4 RQ4: difference among pointer models

We compare the pointer model’s choices horizontally and give some insights from
several aspects. On all four datasets, RF performs better than SVM.

To further investigate the cause, we first calculate each label’s recall score of the
pointer models, then we count the label proportions in the whole dataset. The recall
scores are posted in Tables 6 and 7.

From Tables 6 and 7, we find that RF completely outperforms SVM on jMonkey-
Engine and jFaceRec. On CodeGeneration and j2me, although SVM outperforms
RF on NN ONLY, it still behaves much worse on NGRAM ONLY, not to mention
that the performance on NN ONLY is not a considerable advantage.

RF performs better on skewed data, which results in its higher accuracy than
SVM. We investigate the label proportion of these datasets (please refer to Table 8.
NGRAM ONLY is the minor label, much less than NN ONLY. SVM adapts to the

Table 6 Statistics of recall on jMonkeyEngine and jFaceRec

The bold numbers in the Table means ‘the best’

jMonkeyEngine jFaceRec

NN ONLY
(%)

NGRAM ONLY
(%)

NN ONLY (%) NGRAM ONLY (%)

SVM 83.25 80.69 94.58 90.14
RF 90.48 87.80 98.06 96.90

Table 7 Statistics of recall on
CodeGeneration and j2me

The bold numbers in the Table means ‘the best’

CodeGeneration j2me

NN ONLY (%) NGRAM
ONLY (%)

NN ONLY (%) NGRAM
ONLY
(%)

SVM 93.31 83.84 95.46 83.17
RF 93.19 86.30 94.97 87.44

Table 8 Ratio of label NN
ONLY and label NGRAM ONLY

jFaceRec jMonkey-
Engine

CodeGeneration j2me

Ratio
NN_ONLY

NGRAM_ONLY

2.47 2.37 3.45 5.83

 Automated Software Engineering (2023) 30:11

1 3

11 Page 20 of 28

skewed data worse than RF, has lower recall values on the minor label, and performs
worse than RF looking from the whole dataset.

5.4.5 Comparison with fine‑tuning

In practice, people use the fine-tuning technique to solve one domain’s domain
shift, which is to keep training the generic model on the specific domain. However,
there might not be enough data for fine-tuning for a specific domain. Besides, fine-
tuning requires too many computation resources and too much time, like training the
generic models.

To prove the analysis above, we conduct the fine-tuning experiments on Trans-
former-XL. The training dataset is the same as the N-gram language model for fair.
We kept training the Transformer-based code completion model until convergence.
We present the final test accuracy in Table 9 and the time these experiments con-
sumed in Table 10. In Table 9, each column is for a domain. As for the rows, ‘Before
FT’ is for Transformer-XL’s accuracy before fine-tuning. ‘After FT’ is the accuracy
after fine-tuning. ‘AdaComplete’ is the accuracy of AdaComplete with RF as the

Table 9 Accuracy comparison
with fine-tuning

The bold numbers in the Table means ‘the best’

jMonkey-
Engine
(%)

jFaceRec (%) CodeGen-
eration (%)

j2me (%)

Before FT 62.16 71.33 64.51 61.23
After FT 69.22 76.73 68.88 63.07
AdaComplete 78.43 86.93 77.97 78.84

Table 10 Time consumed comparison

jMonkeyEngine jFaceRec CodeGeneration j2me

AdaComplete 1 m 6 s 52.58 s 4 m 40 s 3 m 58 s
Fine-tuning 1 h 9 m 1 h 2 m 1 h 5 m 1 h 47 m

Fig. 3 Case 1 and Case 2

1 3

Automated Software Engineering (2023) 30:11 Page 21 of 28 11

pointer model. In Table 10, Row ‘Fine-tuning’ is for the time consumed fine-tuning
the generic model. Row ‘AdaComplete’ is a summation for training the N-gram lan-
guage model and the RF pointer model. We report the RF pointer model’s training
time because it consumes more time in training than SVM.

As seen from the results, it is apparent that the fine-tuned Transformer-XL has
worse performance than AdaComplete and consumes much more time for train-
ing. So we can conclude that AdaComplete is more practical and effective than
fine-tuning dealing with the domain-shift introduced by domains.

6 Case study

This section presents several real cases to analyze AdaComplete’s performance.
Figure 3 shows two cases, i.e., Case 1 and Case 2, on the domain of GoogleMap.

The two cases show AdaComplete compensates the generic model’s domain adapt-
ability on the domain of GoogleMap by choosing the local model’s predictions.

Case 1 A Google Map object ‘map’ is created by the factory ‘gMaps,’ where
‘gMaps’ is expected. ‘gMaps’ is a domain-specific entity, whose semantic cannot be
captured by the generic model, thus is not correctly predicted. Instead, it conserva-
tively predicts the method parameter ‘m’ as the final result. Since the local model is
trained on the specific domain source code, the semantic information of the domain-
specific entities can be successfully captured and correctly predicted. AdaComplete
measures the generic model and the local models’ confidence score and chooses to
trust N-gram. As a result, AdaComplete successfully predicts ‘gMaps’ here.

Case 2 The parameter list of method ‘create map’ needs to be filled. However, the
generic model doesn’t know the parameter list. So it predicts the close parenthesis
conservatively. On the contrary, the local model knows the parameter list and gives
its prediction ‘getwidth.’ AdaComplete measures the generic model and the local
models’ confidence score and chooses to trust N-gram. As a result, we successfully
predict ‘getwidth’ here.

We present Case 3 in Fig. 4. This case shows that AdaComplete will follow the
generic model when the token predicted is not domain-relevant.

Case 3 Case 3 is to set the loop length. The variable ‘m_vPoints’ is a Java Array.
Because the method ‘size’ of a Java Array is usually called to set the loop length,
the generic model predicts ’size.’ However, in the domain of this case, the method
‘addElement’ is called more frequently than ‘size.’ Hence, the local model pre-
dicts ‘addElement.’AdaComplete measures the generic model and the local models’

Fig. 4 Case 3

 Automated Software Engineering (2023) 30:11

1 3

11 Page 22 of 28

confidence score and chooses to trust the generic model. As a result, we successfully
predict ‘size’ here.

In the above cases, we show that by applying AdaComplete, we can predict
domain-specific tokens while keeping the generic model’s prediction when the cor-
rect prediction is not domain-specific.

7 Discussion

7.1 Method generalization

AdaComplete can integrate all kinds of generic models and improve their perfor-
mances as long as we find a model-specific metric to measure the model confidence.
For transformer-based methods, in this paper, the Transformer-XL, and the other
works (Ciniselli et al. 2021; Alon et al. 2020), we draw ‘HENT-TX’ as the model-
specific metric. For RNN-based methods Salton et al. (2017), we can use the entropy
of its attention scores. For graph neural networks(Yang et al. 2022; Wang and Li
2021), we can use attention scores for those using self-attention, or involve the node
feature distance for the others Vashishth et al. (2019).

Our method can also be applied to DL-based models with pre-training(Liu et al.
2020b; Ciniselli et al. 2021) because pre-training is just a technique for training a
deep code completion model. The measurements of their confidence scores are not
different from the non-pre-trained code completion models.

7.2 Conservative strategy

We use the conservative strategy in our method and our experiment for strong proof
of AdaComplete’s effectiveness. Our detail setups are:

• BOTH BAD We set the label, BOTH BAD, as the conservative recommendation
strategy for AdaComplete. We choose not to give token recommendations when
the models believe their recommendations are not likely to be correct. Previous
works utilize the aggressive recommendation strategy in that they give recom-
mendations under any circumstances, regardless of the probability of making
mistakes. AdaComplete can have better results using the aggressive strategy. But
it still outperforms the baselines, which strongly proves its effectiveness.

Table 11 Pointer recall on
generic domain

NN ONLY (%) NGRAM
ONLY
(%)

SVM 87.87 27.34
RF 78.61 33.47

1 3

Automated Software Engineering (2023) 30:11 Page 23 of 28 11

• Backbone Selection We use Transformer-XL as the backbone deep learning
model rather than CugLM as a conservative experiment design. All the experi-
ments intended to prove the effectiveness of AdaComplete, which is a general
framework for any deep learning models. So it is more persuasive that with
the help of AdaComplete, a weaker model defeats a more robust model. In our
experiments, AdaComplete with a weaker Transformer-XL outperforms all the
baselines, which proves that AdaComplete works well.

7.3 Limitation and future work

The first threat of the effectiveness of AdaComplete is the effectiveness of the local
model. Empirically, although the generic models have performance loss in a specific
domain, the accuracy will not be too bad to use. And the pointer model does not
need too many data points to train. So the threat to AdaComplete’s validity is the
local model. According to Tabel 4, our local models, the N-gram models, perform
worse than the generic models. Besides, the upper-bounds of AdaComplete in our
experiments have not reached 100%, which is determined by N-gram’s performance.
To improve AdaComplete’s performance, we need to design our local model better.

The second threat to the effectiveness of AdaComplete is the performance of the
pointer model. Although AdaComplete is explicitly designed for domain-specific
code completion tasks, we hope it could perform reasonably well with the generic
DL-based model with the help of automatic pointer models. However, what we
expect is not realized because of the poor performance of the auto-pointer models
(see Table 11). We manually switch to the generic DL-based model for completion
on the generic domain, but it is worth thinking about how to build pointer models
that perform well in the generic domain.

7.4 Impact of data skew

Our well-designed features relieve the threat of data skew. In Table 6, we mention
that data skew is serious in our datasets. Thus we apply more robust versions of
SVM and RF to see the differences. The robust version of SVM is the weighted
SVM Yang et al. (2007). They give each misclassified sample a price. The sample in
the minority class receives higher prices than the majority class. The robust version
of RF is proposed by Chen and Breiman (2004). They proposed to draw samples

Table 12 Performance
comparison for anti-data skew
methods

jMonkey-
Engine
(%)

jFaceRec (%) CodeGen-
eration
(%)

j2me (%)

SVM-raw 76.90 86.57 77.88 78.80
SVM-balanced 77.20 85.97 75.81 77.54
RF-raw 78.43 86.93 77.97 78.84
RF-balanced 75.89 86.07 75.43 76.70

 Automated Software Engineering (2023) 30:11

1 3

11 Page 24 of 28

from the majority class and the minority class separately to keep the data balance
within a subset. The results are shown in Table 12. SVM-raw and RF-raw are the
pointer models we use in AdaComplete. SVM-balanced and RF-balanced are their
corresponding robust version.

The results show that the robust versions have little difference from their raw ver-
sions. Data skew does not have a destructive negative effect. Considering that the
pointer models are simple statistical classifiers, we conclude that our hand-crafted
features are separable and well-designed.

8 Related work

An N-gram-based code completion model uses the N-gram language model to
estimate the output probabilities for all possible outputs. The basic N-gram lan-
guage models explicitly count the n-grams in the training set and use these counts
during inference. The works using N-gram for code completion develop a series
of methods to help N-gram language models to adapt to code nature. Raychev
et al. (2014) trains an RNN to adjust the N-gram language model’s output prob-
abilities. Roos (2015) tries multiple smoothing methods to find the best one for
code completion. Tu et al. (2014) add a ‘cache’ component to help the N-gram
language model to adapt to the ‘localness of source code’. Hellendoorn and
Devanbu (2017) helps the N-gram language model with a much more expansive,
multi-level notion of locality that is well-suited for modeling software.

A DL-based code completion model uses the deep learning method to esti-
mate the output probabilities for all possible outputs. Inherent from neural net-
works, deep code completion models have compact parameters, and large model
capacity to learn from extensive program corpus effectively and efficiently Liu
et al. (2017, 2020b); Li et al. (2018). Furthermore, because neural networks do
well in modeling non-linear relations and mining from a larger dataset, deep code
completion models perform better than those using statistical machine learning
methods in general Karampatsis et al. (2020), not to mention the rule-based code
completion methods.

Researchers have introduced many neural network architectures, training tricks,
and program representations into code completion. Dam et al. (2016) used Long
Short Term Memory architecture to build a language model for code completion.
Kim et al. (2020) introduced Transformer Vaswani et al. (2017) to code completion.
To alleviate the big vocabulary issue in code completion, Li et al. (2018) introduced
the copy mechanism Vinyals et al. (2015) that learns to copy tokens from the context
as the output. Karampatsis et al. (2020) uses Byte-pair Encoding to split the tokens
into sub-tokens. As for the program representation, Kim et al. (2021) tried to feed
ASTs to a transformer for code completion, hoping the syntax information could
help to improve the performance. When the pre-training technique is on-trend in the
field of Natural Language Processing Devlin et al. (2018), Liu et al. (2020b) used
this technique to improve the performance of deep code completion models further.

1 3

Automated Software Engineering (2023) 30:11 Page 25 of 28 11

9 Conclusion

We are the first to raise the issue that applying generic models to a specific domain
harms the models’ performance in code completion. And we propose AdaComplete,
a novel method integrating the generic model and the local model to reduce the loss
by balancing the models’ predictions. The tests show that our method can signifi-
cantly increase the overall accuracy and beat the strong generic models. Further, we
find that AdaComplete beat fine-tuning in both time and accuracy. Compared with
fine-tuning, AdaComplete is more convenient and powerful.

In the future, we’ll try to improve the performance of both local and pointer mod-
els. We will investigate and design a more robust and light-weighted model for the
local models to improve AdaComplete’s upper bound performance. We will design
more meaningful and model-free features for the pointer models to improve the
pointer models’ accuracy. Then we will introduce Online Learning, trying to build
AdaComplete on the fly and regard a single project as a unique domain.

Author contributions All authors contributed to the proposal of the idea. ZW: conducted the experi-
ments. ZW and FL: wrote the manuscript. All authors reviewed the manuscript.

Declarations

Conflict of interest The authors declare no competing interests.

References

Allamanis, M., Barr, E.T., Devanbu, P., et al.: A survey of machine learning for big code and naturalness.
ACM Comput. Surv. (CSUR) 51(4), 1–37 (2018)

Alon, U., Sadaka, R., Levy, O., et al.: Structural language models of code. In: Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, Pro-
ceedings of Machine Learning Research, vol 119. PMLR, pp 245–256, (2020) http:// proce edings.
mlr. press/ v119/ alon2 0a. html

Bakhtin, A., Szlam, A., Ranzato, M., et al.: Lightweight adaptive mixture of neural and n-gram language
models.(2018) arXiv e-prints arXiv –1804

Barone, AVM., Haddow, B., Germann, U., et al.: Regularization techniques for fine-tuning in neural
machine translation. (2017) arXiv preprint arXiv: 1707. 09920

Bhoopchand, A., Rocktäschel, T., Barr, E., et al.: Learning python code suggestion with a sparse pointer
network. (2016) arXiv preprint arXiv: 1611. 08307

Brown, P.F., Della Pietra, S.A., Della Pietra, V.J., et al.: An estimate of an upper bound for the entropy of
english. Comput. Linguist. 18(1), 31–40 (1992)

Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion systems.
In: van Vliet H, Issarny V (eds) Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, 2009, Amsterdam, The Netherlands, August 24-28, 2009. ACM, pp 213–222,
(2009) https:// doi. org/ 10. 1145/ 15956 96. 15957 28,

Chen, C., Breiman, L.: Using Random Forest to Learn Imbalanced Data. University of California, Berke-
ley (2004)

Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language modeling. Comput.
Speech Lang. 13(4), 359–394 (1999)

http://proceedings.mlr.press/v119/alon20a.html
http://proceedings.mlr.press/v119/alon20a.html
http://arxiv.org/abs/1804
http://arxiv.org/abs/1707.09920
http://arxiv.org/abs/1611.08307
https://doi.org/10.1145/1595696.1595728

 Automated Software Engineering (2023) 30:11

1 3

11 Page 26 of 28

Ciniselli, M., Cooper, N., Pascarella, L., et al.: An empirical study on the usage of bert models for code
completion. In: 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR), IEEE, pp. 108–119 (2021)

Corbière, C., Thome, N., Bar-Hen, A., et al.: Addressing failure prediction by learning model confidence.
In: Wallach HM, Larochelle H, Beygelzimer A, et al (eds) Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 2898–2909, (2019) https:// proce edings.
neuri ps. cc/ paper/ 2019/ hash/ 757f8 43a16 9cc67 8064d 9530d 12a18 81- Abstr act. html

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn 20(3), 273–297 (1995). https:// doi. org/ 10.
1007/ BF009 94018

Dai, Z., Yang, Z., Yang, Y., et al.: Transformer-xl: Attentive language models beyond a fixed-length con-
text. (2019) arXiv preprint arXiv: 1901. 02860

Dam, HK., Tran, T., Pham, T.: A deep language model for software code. (2016) arXiv preprint arXiv:
1608. 02715

Devlin, J., Chang, MW., Lee, K., et al.: Bert: Pre-training of deep bidirectional transformers for language
understanding. (2018) arXiv preprint arXiv: 1810. 04805

Feng, Z., Guo, D., Tang, D., et al.: Codebert: A pre-trained model for programming and natural lan-
guages. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: Findings, pp 1536–1547 (2020)

Gage, P.: A new algorithm for data compression. C Users J. 12(2), 23–38 (1994)
Hellendoorn, VJ., Devanbu, P.: Are deep neural networks the best choice for modeling source code? In:

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, pp 763–773
(2017)

Hindle, A., Barr, ET., Su, Z., et al.: On the naturalness of software. In: Glinz M, Murphy GC, Pezzè M
(eds) 34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich,
Switzerland. IEEE Computer Society, pp. 837–847, (2012) https:// doi. org/ 10. 1109/ ICSE. 2012.
62271 35,

Ho, TK.: Random decision forests. In: Proceedings of 3rd international conference on document analysis
and recognition, IEEE, pp. 278–282 (1995)

Hou, D., Pletcher, DM.: Towards a better code completion system by api grouping, filtering, and popular-
ity-based ranking. In: Proceedings of the 2nd International Workshop on Recommendation Systems
for Software Engineering, pp. 26–30 (2010)

Kamath, A., Jia, R., Liang, P.: Selective question answering under domain shift. In: Jurafsky D, Chai J,
Schluter N, et al (eds) Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2020, Online, July 5-10, 2020. Association for Computational Linguistics,
pp. 5684–5696, (2020) https:// doi. org/ 10. 18653/ v1/ 2020. acl- main. 503,

Karampatsis, RM., Babii, H., Robbes, R., et al.: Big code!= big vocabulary: Open-vocabulary models for
source code. In: 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE),
IEEE, pp. 1073–1085 (2020)

Kim, S., Zhao, J., Tian, Y., et al.: Code prediction by feeding trees to transformers. (2020) arXiv preprint
arXiv: 2003. 13848

Kim, S., Zhao, J., Tian, Y., et al.: Code prediction by feeding trees to transformers. In: 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021.
IEEE, pp. 150–162, (2021) https:// doi. org/ 10. 1109/ ICSE4 3902. 2021. 00026,

Kuang, K., Xiong, R., Cui, P., et al.: Stable prediction with model misspecification and agnostic distri-
bution shift. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applicationsof Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020. AAAI Press, pp. 4485–4492, (2020) https:// aaai. org/ ojs/ index. php/
AAAI/ artic le/ view/ 5876

Li, J., Wang, Y., Lyu, MR., et al.: Code completion with neural attention and pointer networks. In: Lang
J (ed) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. ijcai.org, pp. 4159–4165, (2018) https:// doi. org/
10. 24963/ ijcai. 2018/ 578,

Liu, C., Wang, X., Shin, R., et al.: Neural code completion. (2017) https:// openr eview. net/ forum? id=
rJbPB t9lg

https://proceedings.neurips.cc/paper/2019/hash/757f843a169cc678064d9530d12a1881-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/757f843a169cc678064d9530d12a1881-Abstract.html
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1608.02715
http://arxiv.org/abs/1608.02715
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.18653/v1/2020.acl-main.503
http://arxiv.org/abs/2003.13848
https://doi.org/10.1109/ICSE43902.2021.00026
https://aaai.org/ojs/index.php/AAAI/article/view/5876
https://aaai.org/ojs/index.php/AAAI/article/view/5876
https://doi.org/10.24963/ijcai.2018/578
https://doi.org/10.24963/ijcai.2018/578
https://openreview.net/forum?id=rJbPBt9lg
https://openreview.net/forum?id=rJbPBt9lg

1 3

Automated Software Engineering (2023) 30:11 Page 27 of 28 11

Liu, F., Li, G., Wei, B., et al.: A self-attentional neural architecture for code completion with multi-task
learning. In: Proceedings of the 28th International Conference on Program Comprehension, pp.
37–47 (2020a)

Liu, F., Li, G., Zhao, Y., et al.: Multi-task learning based pre-trained language model for code comple-
tion. In: 2020 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE), IEEE, pp. 473–485 (2020b)

Nguyen, TT., Nguyen, AT., Nguyen, HA., et al.: A statistical semantic language model for source code.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 532–
542 (2013)

Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach.
Learn. Res. 12, 2825–2830 (2011)

Radford, A., Wu, J., Child, R., et al.: Language models are unsupervised multitask learners. OpenAI Blog
1(8), 9 (2019)

Raychev, V., Vechev, MT., Yahav, E.: Code completion with statistical language models. In: PLDI. ACM,
pp. 419–428 (2014)

Robbes, R., Lanza, M.: Improving code completion with program history. Autom. Softw. Eng. 17(2),
181–212 (2010). https:// doi. org/ 10. 1007/ s10515- 010- 0064-x

Roos, P.: Fast and precise statistical code completion. In: ICSE (2). IEEE Computer Society, pp. 757–759
(2015)

Saenko, K., Kulis, B., Fritz, M., et al.: Adapting visual category models to new domains. In: Daniilidis
K, Maragos P, Paragios N (eds) Computer Vision - ECCV 2010, 11th European Conference on
Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV, Lecture
Notes in Computer Science, vol 6314. Springer, pp. 213–226, (2010) https:// doi. org/ 10. 1007/ 978-3-
642- 15561-1_ 16,

Salton, G., Ross, R., Kelleher, J.: Attentive language models. In: Proceedings of the Eighth International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 441–450 (2017)

Tu, Z., Su, Z., Devanbu, P.: On the localness of software. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 269–280 (2014)

Vashishth, S., Yadav, P., Bhandari, M., et al.: Confidence-based graph convolutional networks for semi-
supervised learning. In: The 22nd International Conference on Artificial Intelligence and Statistics,
PMLR, pp. 1792–1801 (2019)

Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. (2017) arXiv preprint arXiv: 1706.
03762

Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. (2015) arXiv preprint arXiv: 1506. 03134
Wang, J., Lan, C., Liu, C., et al.: Generalizing to unseen domains: A survey on domain generalization. In:

Zhou Z (ed) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021. ijcai.org, pp. 4627–4635, (2021)
https:// doi. org/ 10. 24963/ ijcai. 2021/ 628,

Wang, Y., Li, H.: Code completion by modeling flattened abstract syntax trees as graphs. In: Proceedings
of the AAAI Conference on Artificial Intelligence, pp. 14,015–14,023 (2021)

Yang, K., Yu, H., Fan, G., et al.: A graph sequence neural architecture for code completion with semantic
structure features. J. Softw. Evol. Process 34(1), e2414 (2022)

Yang, X., Song, Q., Wang, Y.: A weighted support vector machine for data classification. Int. J. Pattern
Recogn. Artif. Intell. 21(05), 961–976 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1007/s10515-010-0064-x
https://doi.org/10.1007/978-3-642-15561-1_16
https://doi.org/10.1007/978-3-642-15561-1_16
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1506.03134
https://doi.org/10.24963/ijcai.2021/628

 Automated Software Engineering (2023) 30:11

1 3

11 Page 28 of 28

Authors and Affiliations

Zejun Wang1,2 · Fang Liu3 · Yiyang Hao4 · Zhi Jin1,2

 Zejun Wang
 zejunwang@pku.edu.cn

 Fang Liu
 fangliu@buaa.edu.cn

 Yiyang Hao
 haoyiyang@nnthink.com

1 School of Computer Science, Peking University, Beijing, China
2 Key Lab of High Confidence Software Technology, MoE (Peking University), Beijing, China
3 State Key Laboratory of Software Development Environment, Beihang University, Beijing,

China
4 Silicon Heart Tech Co., Beijing, China

	AdaComplete: improve DL-based code completion method’s domain adaptability
	Abstract
	1 Introduction
	2 Empirical study
	2.1 Domain-specific projects and generic projects
	2.2 Identify domain-specific projects
	2.3 Experiments and results

	3 Background
	3.1 Domain adaptability & domain shift
	3.2 Transformer-XL
	3.3 N-gram language model

	4 AdaComplete
	4.1 Overall framework
	4.2 Model instantiation
	4.3 Pointer model
	4.3.1 Input features of the pointer model
	4.3.2 Output labels of the pointer model
	4.3.3 Choices of the pointer model
	4.3.4 Build and use the pointer model

	5 Experiments and analysis
	5.1 Baselines
	5.2 Data preparation
	5.3 Experimental setup
	5.3.1 Experiment procedure
	5.3.2 Models and parameters
	5.3.3 Experimental environment
	5.3.4 Metrics
	5.3.5 Vocabulary

	5.4 Research questions and results
	5.4.1 RQ1: performance upper-bound
	5.4.2 RQ2: overall method performance
	5.4.3 RQ3: contribution of each component
	5.4.4 RQ4: difference among pointer models
	5.4.5 Comparison with fine-tuning

	6 Case study
	7 Discussion
	7.1 Method generalization
	7.2 Conservative strategy
	7.3 Limitation and future work
	7.4 Impact of data skew

	8 Related work
	9 Conclusion
	References

