
Vol.:(0123456789)

Automated Software Engineering (2023) 30:11
https://doi.org/10.1007/s10515-023-00376-y

1 3

AdaComplete: improve DL‑based code completion 
method’s domain adaptability

Zejun Wang1,2 · Fang Liu3 · Yiyang Hao4 · Zhi Jin1,2

Received: 31 August 2022 / Accepted: 17 January 2023 / Published online: 6 March 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2023

Abstract
Code completion is an important feature in integrated development environments 
that can accelerate the coding process. With the development of deep learning tech-
nologies and easy-to-acquire open-source codebases, many Deep Learning based 
code completion models (DL models) are proposed. These models are trained using 
the generic source code datasets, resulting in poor domain adaptability. That is, 
these models suffer from performance loss when helping programmers code in a 
specific domain, e.g., helping to decide which domain-specific API to call. To solve 
the problem, we propose AdaComplete, a simple and effective framework that uti-
lizes a local code completion model to compensate DL models’ domain adaptabil-
ity. The local code completion model is trained using the source codes of the target 
domain. When used in code completion, given the context, AdaComplete can adap-
tively choose the recommendations from either the DL model or the local code com-
pletion model based on our hand-crafted features. Experimental results show that 
AdaComplete outperforms state-of-the-art DL-based code completion methods on 
specific domains and can improve the accuracy by 7% on average.

Keywords Code completion · Neural network · N-gram · Model integration · 
Domain adaptability

1 Introduction

Code completion is a commonly used feature in Integrated Development Environ-
ments (IDEs) that can predict the next token given existing code in the context. It 
is a critical tool in software development that benefits both quality and speed Bruch 
et al. (2009). Early code completion researchmainly used rule-based methods Rob-
bes and Lanza (2010); Hou and Pletcher (2010) or statistical machine learning 
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models Hindle et al. (2012); Tu et al. (2014); Nguyen et al. (2013) to perform code 
completion. With the development of deep learning and easy-to-acquire open-source 
code corpus, Deep Learning models (DL models) are generally used for code com-
pletion, for example, Recurrent Neural Network (RNN) and Transformer Allamanis 
et al. (2018); Bhoopchand et al. (2016); Li et al. (2018); Liu et al. (2020b). In gen-
eral, a DL model for code completion is usually trained and tested on a large generic 
source code dataset Karampatsis et al. (2020); Liu et al. (2020b). For example, Liu 
et al. (2017) and Li et al. (2018) used 100k source code files for training and 50k 
for testing. Karampatsis et al. (2020) built a model for the C programming language 
based on 4,601 projects with 1.68B tokens. Liu et  al. (2020b) trained and tested 
their method on a Java dataset with 800,983 source code files. Feng et  al. (2020) 
used 2.1 M bimodal datapoints and 6.4 M unimodal codes across six programming 
languages. Researchers believe the more data they feed, the better the DL models 
would be.

However, current DL-based code completion models suffer from the perfor-
mance loss when applied to a specific domain due to lack of ‘Domain Adaptability’. 
They might make wrong predictions on domain-specific code, e.g., the invocation 
of domain-specific APIs. A domain in code completion refers to projects pointed 
at similar tasks or based on the same programming framework. For instance, the 
domain of ‘Face Recognition of Java’ refers to the Java projects that are used for 
face recognition. The domain of ‘Spark’ comprises the projects that utilize the Spark 
framework for large-scale data processing. The ‘adaptability’ means the ability of 
the DL models trained on generic source codes to adapt to a specific domain.

To better illustrate the problem that current DL models lack domain adaptabil-
ity, we raise an example collected from GitHub in Fig. 1. The following Java code 
comes from the domain ‘Fast Fourier Transformation (FFT).’ Compared to code 
of other domains, this snippet involves many domain-specific APIs for FFT, for 

Fig. 1  Example of lacking 
domain adaptability
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instance, ‘real,’ ‘imag,’ ‘mag,’ and ‘ifft’. Here we use a GPT-2 Radford et al. (2019) 
based code completion model TabNine Pro.1 In Fig. 1, we highlight the tokens that 
TabNine fails to predict. TabNine’s wrong predictions are listed in the comments 
right above the highlighted tokens. TabNine fails to predict the domain-specific 
APIs: ‘real,’ ‘mag’ and ‘ifft.’On the contrary, TabNine gives predictions that are 
irrelevant to the domain: ‘return,’ ‘minLength’ and ‘if.’ This example shows that the 
DL-based code completion model, TabNine, fails to predict these domain-specific 
tokens and cannot adapt well to the domain ‘FFT.’

It isn’t easy to use the fine-tuning technique to improve the DL models’ perfor-
mance on the specific domain, although using fine-tuning is intrinsic. Fine-tuning 
means tuning the DL model’s parameters to fit the specific domain. To successfully 
fine-tune a DL model, two conditions need to be fulfilled. The first one is the scale 
of the dataset used for fine-tuning, and it is very difficult to fine-tune the huge DL 
model on a dataset with limited scale Barone et al. (2017). The other one is the suf-
ficient training time and computation resources. However, it is hard to meet both 
these requirements since the training data of a specific domain is always not big 
enough, and the computation resources for academic researchers are also limited.

To improve the DL-based code completion models’ performance on specific 
domains, we propose a novel general framework AdaComplete. It is light-weighted 
and aims at compensating any DL models’ domain adaptability by integrating a 
local domain-specific code completion method (local model in short for conveni-
ence). AdaComplete works as follows. Given the context, AdaComplete first pro-
duces the next token predictions from both the DL model and the local model. Then 
we balance these predictions with rules and a series of hand-crafted features and use 
the balanced result as the final prediction. AdaComplete is a general framework that 
can be applied to any DL model for code completion. In this paper, we instantiate 
AdaComplete with ‘Transformer-XL+N-Gram’. Transformer-XL network Dai et al. 
(2019) is adopted to instantiate the DL model following Liu et al. (2020a). As for 
the local model, we instantiate it with an N-gram model, which is trained on the 
domain-specific source code dataset.

To prove that AdaComplete can improve DL models’ performance on a spe-
cific domain, we build several domain-specific datasets which are collected from 
GitHub.2 Then we compare AdaComplete with several state-of-the-art DL-based 
code completion models on our proposed domain-specific datasets. We use predic-
tion accuracy to evaluate the models’ performance. Experimental results demon-
strate that AdaComplete outperforms the state-of-the-art generic code completion 
methods by a large margin. Besides, we also conducted experiments to compare 
AdaComplete with Fine-tuning techniques. The results show that AdaComplete can 
outperform Fine-tuning techniques while taking less time.

The main contribution of this paper is summarized as follows:

1 https:// www. tabni ne. com/.
2 https:// github. com/.

https://www.tabnine.com/
https://github.com/
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• We are the first to raise the issue that DL-based code completion models suf-
fer from performance loss when directly used for completing domain-specific 
source code.

• We propose AdaComplete, a novel method to increase the overall code com-
pletion accuracy via the light-weighted integration of a local domain-specific 
model.

• We create several Java domain-specific datasets, which can be used to evaluate 
the domain adaptation capability of the code completion model. The datasets are 
publicly available and are shared through Figshare.3

• We evaluate AdaComplete on the domain-specific datasets and compare it with 
several state-of-the-art generic code completion methods and Fine-tuning tech-
niques. The results show that AdaComplete can outperform all the baselines by a 
large margin.

The reminder of this paper is organized as follows: Sect. 2 is the empirical study 
to investigate our motivation. Section 3 presents the background of this paper. Sec-
tion 4 is the detailed description of AdaComplete, including the overall framework 
and description of AdaComplete’s modules. Section  5 shows our experimental 
results and analysis. Section 6 is our case study to prove AdaComplete’s effect by 
cases. Section  7 discusses method generalization, threats to validity, and how to 
choose pointer models. Section 8 describes the related work of deep code comple-
tion. Section 9 gives the conclusion of this paper.

2  Empirical study

In this section, we conducted an empirical study to investigate our motivation that 
current DL-based code completion models lack domain adaptability, resulting in 
performance loss when applied to a specific domain.

2.1  Domain‑specific projects and generic projects

A project is a domain-specific project when we emphasize that it is developed 
for a specific task or is built on one or multiple specific programming frame-
works, as introduced in the previous section. Under this definition, each project is 
domain-specific.

On the contrary, we have the concept of generic project and generic domain. The 
generic domain is an alias of ‘cross-domain’ for better narration. When we refer to 
a generic domain, we do not consider the corresponding projects’ tasks or frame-
works. For example, in this paper we use a dataset on the generic domain, we mean 
that this dataset is cross-domain. The projects within are collected randomly, cover-
ing various tasks and frameworks. Furthermore, when we refer to a generic project, 

3 https:// figsh are. com/s/ c0bd0 430cd 4134a b07f4.

https://figshare.com/s/c0bd0430cd4134ab07f4
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we mean the project belongs to the generic dataset and is collected randomly with-
out considering its tasks and programming framework.

For our experiments, we collect four domain-specific datasets. Besides, the 
experiments involve a generic domain dataset from previous works. We select the 
domains carefully to guarantee that there is no overlapping between the domain-
specific datasets and the generic domain dataset by checking the source code files

2.2  Identify domain‑specific projects

For our experiments, we investigate the following four domains:

• jMonkeyEngine: Projects built on a game engine named ‘jMonkeyEngine’
• jFaceRec: Projects built for face recognition but built on Java
• CodeGeneration: Projects built for auto code generation
• j2me: Projects built based on the platform j2me

To create the datasets for the domains, we search GitHub with the domain’s name 
as keywords. We sort the matched projects by their stars, download the high-starred 
repositories manually and check the contents manually. Then we filter the files and 
keep the source code files only.

We choose these domains for the following reasons: Their clear boundaries make 
it easier for us to validate whether our crawled projects belong to these domains. The 
projects of these domains are helpful in our real life; thus, the experiment results 
from these projects are meaningful. These projects are rare, contributing little to the 
cross-domain datasets for training the DL-based code completion model. As a result, 
these domains can reveal the significant differences between the cross-domain and 
domain-wise performance.

2.3  Experiments and results

To verify our assumption, we evaluate the following state-of-the-art deep code com-
pletion models on the four specific domains

Table 1  Accuracy comparison on the generic domain and specific domains

The bold numbers in the Table means ‘the best’

Generic models Accuracy on datasets

Generic (%) jMonkeyEn-
gine (%)

jFaceRec (%) CodeGenera-
tion (%)

j2me (%)

Transformer-xl 72.12 62.16 71.33 64.51 61.23
BPE 70.29 59.12 69.89 57.56 43.23
CugLM 84.06 75.19 74.84 74.65 67.66
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• Transformer-XL Dai et  al. (2019): a self-attentional neural network-based lan-
guage model for code completion.

• BPE Karampatsis et al. (2020): a GRU-based neural language model for code 
completion, which leverage Byte Pair Encoding (BPE) Gage (1994) algorithm 
to address the OoV (Out-of-Vocabulary) problem.

• CugLM Liu et al. (2020b): A Transformer-based pre-trained language model 
for code completion, which achieves state-of-the-art results.

The completion accuracies of these models are shown in Table 1. The results on 
the generic-domain dataset are also listed in the ‘generic’ column, and the other 
data columns are the domain-specific datasets’ results.

According to Table 1, the accuracies of all the three DL models drop by 10% 
on average when applied to the domain-specific datasets. These results strongly 
support our motivation that current DL code-completion models are short of 
domain adaptability.

3  Background

3.1  Domain adaptability & domain shift

The domain adaptability is the ability for DL models to deal with domain shift, 
i.e., the difference of data distribution across the domains. So we introduce the 
background knowledge of domain shift here for readers to better understand the 
problem.

We borrow the annotations from Wang et  al. (2021) to clarify the concept of 
‘domain’ and ’domain shift’ with formulas. Suppose that we have an input space 
X  , an output space Y and a joint distribution PXY . With PXY , we draw N data points 
from X  and Y , then build a multi-set S {(xi, yi)}Ni  , where xi ∈ X  and yi ∈ Y . We 
name S a domain. For convenience, we call PXY the ‘drawing distribution.’ Further, 
we define the domain shift of two domains as the difference between their drawing 
distributions.

Domain shift severely damages the performance of data-driven-based methods in 
many research fields. Different fields have different methods to alleviate the domain 
shift. For example, Saenko et  al. (2010) discussed domain shift in the context in 
object recognition. They adapted models to a new domain by learning a transforma-
tion that minimizes the difference in feature space. Kuang et al. (2020) focused on 
distribution in regression tasks. They presented a Decorrelated Weighting Regres-
sion (DWR) algorithm. DWR jointly optimizes a variable decorrelation regular-
izer and a weighted regression model. Kamath et al. (2020) found that QA systems 
make mistakes in unknown domains. So the authors designed a calibrator to monitor 
the QA system. When the QA system was going to make mistakes in the unknown 
fields, the calibrator would abstain from giving answers.

In the field of code completion, we are the first to discuss the threat of domain 
shift. The generic source code dataset forms a ‘generic domain’. And the domain 
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shift between the generic domain and the specific domain causes the performance 
loss of the DL-based code completion models.

3.2  Transformer‑XL

Transformer-XL Dai et  al. (2019) is a powerful language model, which has been 
used as the base architecture or the strong baselines in many code completion 
research Liu et al. (2020a, b); Wang and Li (2021), which is also used in AdaCom-
plete. Transformer-XL brings the recurrent mechanism to Transformer and a novel 
way for positional embedding. Compared with RNN and vanilla Transformer, it can 
capture longer dependency from the input sequences. Besides, The evaluation pro-
cess is also much faster than vanilla Transformer. As for the performance, the Trans-
former-XL improves the state-of-art results of bpc/perplexity on many language 
modeling benchmarks, including enwiki8, text8, WikiText-103, One Billion Word, 
and Penn Treebank (without fine-tuning).

Unlike the vanilla Transformer, Transformer-XL involves the recurrent mecha-
nism. It caches the previous hidden states. These hidden states join the computation 
of the hidden states as the key and value vectors directly or after some transforma-
tions. Suppose we have two consecutive segments of length L be s� and s�+1 that 
are adjacent temporarily. Denoting the n-th layer hidden state produced for s� by 
hn
�
∈ ℝ

L∗d , where d is the hidden dimension. Then, the n-th layer hidden state for 
segment s�+1 is produced as follows:

where SG(⋅) stands for ‘Stop Gradient’, [ha◦hb] stands for concatenating two matrix 
ha and hb along the temporal axis and W. denotes model parameters. Then Trans-
former-XL uses the encoding matrix to represent the relative distances. Concretely 
speaking, the unnormalized attention score from position i to position j is:

where Wn
k,R
, u, v are learnable parameters and R is the sinusoid encoding matrix. 

Learning the relative positions of the tokens is also important for code completion 
task, thus we also use the relative positional embedding in our model.

3.3  N‑gram language model

The ‘N-gram language model’ is a model that estimates the appearing proba-
bilities of all N-token tuples in the language by counts. And we call the N-token 
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tuple ’the N-gram’. Given an N-gram model ML for language L and an N-gram 
s = w1,w2,…wN , we can get the appearing probability of s: pL(s) = ML(s).

With Markov Assumption, N-gram model can predict the next token based on 
N − 1 most recent tokens. For a sequence w1,w2,… ,wi−1 and any candidate predic-
tion wi , the Markov Assumption tells us

Because p(wi−N+1,… ,wi−1) is constant, we only need to estimate 
p(wi,wi−N+1,… ,wi−1) for all possible wi and pick up the wi with the largest value. 
We can use the N-gram language model to estimate the values:

N-gram models need smoothing methods to help improve their generalization. It is 
crucial because many N-grams could not be observed in the training corpus. Given 
the previous N − 1 tokens, if the N-gram formed by word w and the context has not 
been observed, word w will never have the chance to be the output. This phenom-
enon harms N-gram models’ generalization ability. To deal with this issue, research-
ers use linear interpolation to calculate the probabilities rather than counting directly 
Chen and Goodman (1999). Generally, following Brown et al. Brown et al. (1992), 
we have the following expression:

where �� is the context of length i, �N is the N’s confidence score and p0(w‖xN−1) is 
the discounted probability of order N − 1 that estimated directly from the counts. In 
this way, p is calculated recursively and stops when the context is empty.

Methods vary in the way of calculating �N . For example, Hellendoorn and 
Devanbu (2017) use the Jelinek-Mercer smoothing method in their code com-
pletion model, whose confidence scores are all 0.5. Witten-bell considers how 
likely a few particular words follow a context. The more likely the situation is, 
the higher the confidence score.

4  AdaComplete

4.1  Overall framework

To compensate the DL models’ domain adaptability, we propose AdaComplete, a 
generic light-weighted framework that integrates the DL-based code completion 
model with a domain-specific local code completion model. It balances the pre-
dictions of the DL model and local model by our designed hand-crafted features. 
Firstly, we briefly define two main concepts in our model.

Generic Model    A generic model is the DL-based code completion model 
for which we want to compensate the domain adaptability. It is called ‘generic’ 

(3)p(wi‖w1,w2,… ,wi−1) = p(wi‖wi−N+1,… ,wi−1)

(4)p(wi,wi−N+1,… ,wi−1) = ML(wi,wi−1,… ,wi−N+1)

p(w‖xN−1) = �Np0(w‖xN−1) + (1 − �N)p(w‖xN−2)
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because it is trained on the source code from the ‘generic domain.’ And the 
‘generic domain’ is defined in Sect. 3.1.

Local Model    A local model is a code completion model to compensate the 
generic model’s domain adaptability. It is called ‘local’ because it is built on the 
local domain-specific dataset.

Algorithm 1 AdaComplete Overall Framework
Context: x
Data: generic model MT , N-gram Language Model MN , Pointer Model MP

Output: Prediction wo

wT ⇐ MT (x)
wN ⇐ MN (x)
if wT == wN then

wo ⇐ wT � Rule r1
else if wT is OOV then

wo ⇐ wN � Rule r2
else

hT is the inner state of MT when generating wT ;
hN is the inner state of MN when generating wN ;
c ⇐ Mp(hT , hN );
if c == MT then

wo ⇐ wT

else if c == MN then
wo ⇐ wN

else
wo ⇐ NULL

end if
end if

We instantiate the generic model with Transformer-XL and the local model 
with the N-gram model. We present AdaComplete’s overall framework in Algo-
rithm  1. The working process is also illustrated in Fig.  2. We have a generic 

Fig. 2  AdaComplete overall 
architecture
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model and a local N-gram code completion model in the framework. We bal-
ance their outputs to get the final prediction. In detail, we collect the two models’ 
predictions and hidden states given the code context. Then we use the following 
workflow to produce the final prediction as the final output:

• r1 (Same Output Check):  If wT = wN , that is, the outputs from MT and MN are 
the same, we just use wT to be the output. Else we move on to r2.

• r2 (OOV Output Check):  If wT is Out of the Vocabulary (OoV), which is a mean-
ingless token that cannot satisfy the users need, we use wN as the output as it has 
the chance to be the correct prediction. Else we move on to use Mp.

• Mp (The Pointer Model):  Mp is a simple classifier that takes part of the inner 
states of MT and MN as its input and decides which output to choose. Signifi-
cantly, if Mp thinks that both of the outputs are wrong, it will tell the programmer 
that the code completion tool can not give a correct prediction.

In the following subsection, we will introduce the components of AdaComplete in 
detail.

4.2  Model instantiation

We use the Transformer-XL network Dai et  al. (2019) as the generic DL model, 
which is a powerful language model and has been used as the base architecture or 
the strong baselines in many code completion research Liu et  al. (2020a, 2020b); 
Wang and Li (2021). We train our Transformer-XL with the cross-domain dataset 
from Liu et al. (2020b).

For the local model, we apply the N-gram language model to summarize the local 
data distribution based on the local vocabulary. It is light-weighted to build and is 
friendly to a personal computer running an IDE. As it can handle extensive vocabu-
lary, it helps deal with the OoV problem. Besides, Hellendoorn and Devanbu (2017) 
proves that the N-gram model can have acceptable accuracy performance in small 
datasets compared with DL-based code completion models.

To train the local model, first, we need to download the N-gram toolkit from the 
GitHub repo of Hellendoorn and Devanbu (2017).4 Then we split the dataset of one 
domain into three splits for training, validation, and test. We use the training split 
to train the local N-gram model, following the instructions on the toolkit’s GitHub 
homepage. We use Jelinek-Mercer smoothing method in the N-gram model follow-
ing Hellendoorn and Devanbu (2017).

4.3  Pointer model

We design a pointer model to balance the outputs of the generic and local mod-
els. The pointer model is a classification model. It takes a few specifically designed 

4 https:// github. com/ mast- group/ OpenV ocabC odeNLM.

https://github.com/mast-group/OpenVocabCodeNLM
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features as its input and adaptively chooses the output from MT and MN , the same as 
classifying the situations. In the following sections, we introduce our designed input 
features, the labels for classification and the choices of the model instantiation.

4.3.1  Input features of the pointer model

We use the confidence scores of both the generic and local N-gram models as the 
features. The confidence score is the name for a group of metrics. These metrics 
measure how likely the models believe that their predictions are correct.

We choose confidence scores as the features for the following reasons: (1) The 
confidence score suggests the possibility for a model to make mistakes. The lower 
the confidence score, the more chance a model will make mistakes Corbière et al. 
(2019). (2) The confidence score is data-free. It is unrelated to the actual form 
of inputs and the ground truth, and only cares about the inner states of the deep 
model and N-gram model. Thus the input’s space is narrowed, and the training is 
simplified. (3) They are expandable. Model Confidence is crucial because it helps 
increase an AI system’s robustness by warning the user when the model is not 
confident about its output and needs human intervention. As for the relevance to 
choosing the prediction, it is proved by our experiments in the following section.

For the actual features of the confidence scores, we first introduce the features 
that could be extracted from both the generic and local model. We extract the 
models’ maximum class probability Corbière et  al. (2019) and output distribu-
tion entropy. Then we introduce the features individually designed for each of the 
models. For N-gram, we follow Bakhtin et al. (2018) and extract each order’s dis-
count probabilities as the features. And for Transformer-XL, we design the confi-
dence score based on the attention scores. We use each of the last layer’s attention 
head entropy summarized from the normalized attention score as the additional 
confidence measurements. This design is originated from the motivation of self-
attention. The model is supposed to pay attention to a few tokens. If the attention 
scores are averaged over the previous inputs, the model has no clue about what to 
focus on, that is to say, lacking confidence. The Shannon Entropy is an excellent 
way to estimate the confidence scores.

The computation of the Transformer-XL’s confidence score is illustrated 
below. For the token in position i, we denote its unnormalized attention scores of 
one attention head:

Then we use a softmax function to normalize the attention score ��,� and calculate 
the entropy:

(5)Ãi,j = An
�,i,j
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If we denote the attention head as k, we can rewrite the entropy as Ek
i
.

All the features are summarized as follows:

• DP-NG: The discount probabilities of the N-gram model.
• MCP-NG: The maximum class probability generated by the N-gram
• VENT-NG: The entropy of the probability distribution over the vocabulary gen-

erated by the N-gram
• HENT-TX: The multi-head attention score entropy of the Transformer-XL lan-

guage model
• MCP-TX: The maximum class probability generated by the Transformer-XL lan-

guage model
• VENT-TX: The entropy of the probability distribution over the vocabulary gen-

erated by the Transformer-XL language model

4.3.2  Output labels of the pointer model

Finally, we introduce the output labels of our pointer model. The outputs of the 
pointer model are divided into three classes: (1) NN ONLY: The prediction of 
the generic model is correct while that of the N-gram model is not; (2) N-GRAM 
ONLY: The prediction of the N-gram model is the correct while that of the generic 
model is not; (3) BOTH BAD: Both of the predictions are wrong.

4.3.3  Choices of the pointer model

To make AdaComplete both light-weighted and effective, In this paper, we choose 
two statistical classifiers as the pointer model: the Support Vector Machine, the Ran-
dom Forest.

(1)  Support Vector Machine (SVM) Cortes and Vapnik (1995) proposed SVM as a 
robust linear classifier. It inserts a maximum-margin hyperplane to divide differ-
ent kinds of data points. We consider SVM because training SVM is very simple. 
Because it is a convex optimization problem, then convergence is guaranteed.

(2)  Random Forest (RF) The Random Forest Model is a statistical classification 
model of ensemble learning first introduced by Ho (1995). The model builds 
decision trees using the Bagging strategy. However, the bagging strategy is not 
only applied to the data points but also the features. When predicting, the major-
ity of the votes is the final result. We consider RF because it can decrease the 

(6)

pi,j =
eÃi,j

∑
k e

Ãi,k

Ei =
�

j

pi,jlog(
1

pi,j
)
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variance without increasing the bias thanks to the ensemble mechanism. Besides, 
constructing decision trees is simple.

4.3.4  Build and use the pointer model

To build the pointer model, we first run the inference process of both the generic 
model and the local model on the validation split of the domain-specific dataset. We 
collect their intermediate states during the inference and extract the features intro-
duced in 4.3.1. After the inference, we compare the models’ output with the ground-
truth and build labels according to  4.3.2. The situations can be summarized into 
three classes as introduced in 4.3.2. In practice, we use integers to represent these 
situations, 0 for NN ONLY, 1 for NGRAM ONLY, 2 for BOTH BAD. As a result, 
we create a dataset for the pointer model. We use this dataset to train the pointer 
model in the same way as training a classification model.

To put the pointer model into use, given the previous code x, we input x into both 
the generic and local models to get their inputs and intermediate states. Then we 
extract features from these states and input them into the local model to get its out-
put. If the output is 0, we use the generic model’s output; if the output is 1, we use 
the local model’s output. Otherwise (the output is 2), we warn the user that both the 
outputs are wrong and the prediction is failed.

5  Experiments and analysis

5.1  Baselines

To prove AdaComplete’s effectiveness, except for Transformer-XL, we introduce 
another two state-of-the-art generic models as our baselines. These code completion 
models incorporate specific techniques to modify the simple Transformer-family-
based deep code completion models. They are stronger than the Transformer-XL-
based code completion model we use in AdaComplete. One is GRU BPE (BPE for 
short) Karampatsis et al. (2020) from ICSE 2020. This work uses the BPE technique 
to represent tokens. The other is CugLM Liu et al. (2020b) from ASE 2020, which 
uses the multi-task technique to pre-train their Transformer backend. These base-
lines cover the main technology trends of code completion: BPE, Transformer, and 
Pre-training.

5.2  Data preparation

The generic dataset used for training the generic model is the Java dataset used by 
Liu et al. (2020b), and we call it Java_full. It is a large dataset with 9708 projects 
and 800,983 files. To reproduce the testing results, we follow the partition scheme 
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described in Liu et al. (2020b) that 94% of the projects go to the training set and the 
rest are equally divided for validation and test.

The local dataset is the collection of projects in one specific domain. We choose 
four domains and collect projects in each domain correspondingly to form four 
domain-specific datasets. The domains are:

• jFaceRec: Java projects about face recognition
• jMonkeyEngine: Java projects about a game engine called jMonkeyEngine
• CodeGeneration: Java projects about automatic code generation
• j2me: Java projects about j2me

All the projects in these datasets are collected from the public open-source GitHub 
repositories. We exclude the files that appear in Java_full. After filtering, we reserve 
projects with more than one source file and tokenize each program into a token 
sequence with Python package javalang. Then we randomly permute each project’s 
files and split them into the training, validation, and test sets. We list the statistics 
about the datasets in Table 2.

5.3  Experimental setup

5.3.1  Experiment procedure

The experiment procedure is divided into the following steps:

• Step 1: We train a Transformer-XL-based deep code completion model on a 
global dataset.

• Step 2: We choose a domain and draw a local dataset from it.
• Step 3: We train an N-gram language model on the train part of the local dataset.
• Step 4: We train the pointer models on the validation part of the local dataset. All 

modules in AdaComplete are ready.
• Step 5: We test AdaComplete and the baselines on the test part of the local data-

set then compare the results.

Table 2  Statistics of the collected datasets

Train_token Valid_token Test_token Unk rate (%)

jMonkeyEngine 666,019 291,465 248,495 23.00
jFaceRec 119,8077 542,909 447,096 23.70
CodeGeneration 1,583,434 638,783 494,019 24.34
j2me 2,126,631 929,536 967,579 30.54
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5.3.2  Models and parameters

We describe the models and their configurations in this section.
Generic Models   Because we use the dataset in Liu et al. (2020b) as the generic 

dataset to train these baselines, and these baseline methods are also tested in Liu 
et  al. (2020b), we directly follow their model setup. We utilize a Transformer-XL 
implemented by HuggingFace5 with 6 layers, 516-dimensional hidden states, and 6 
attention heads. The hidden inner size of the feed-forward layer is 3072. The mem-
ory length is 256. For GRU BPE, we set the hidden size to be 1500, and the other 
part in their code unchanged.6 As for CugLM, because it involves pre-training and 
its training process is complex, we directly employ their implementation and model 
setup.7

Local N-gram Model   Our implementation of the local N-gram model is a modi-
fication of Hellendoorn’s implementation Hellendoorn and Devanbu (2017).8 We 
get the N-gram model’s inner states as mentioned in the method. Besides that, eve-
rything is the same as they were. Following the setup reported in Hellendoorn and 
Devanbu (2017), we use the Jelinek-Mercer smoothing method and set the N-gram 
order as 6.

Statistical Classifier    The SVM and the Random Forest are implemented by 
Pedregosa et al. (2011). For both models, we use their default structure.

5.3.3  Experimental environment

We used 2 NVIDIA Tesla V100 GPUs to train our generic Transformer-XL, CugLM, 
and BPE model. Our CPU is Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz. For 
the Random Forest, we manually set its parallel jobs as 16. For the other implemen-
tations of the pointer model, the numbers of parallel jobs are the same as the default.

5.3.4  Metrics

We use top-1 accuracy as the metric, matching accuracy between the oracle and the 
token predicted with the highest probability. If the baselines think their output is 
OOV, we regard this prediction as a failure.

5.3.5  Vocabulary

The vocabularies for the generic models and the local N-gram language model 
are different. We built the vocabulary for the generic models based on the training 
set of Java_full. We followed Liu et al. (2020b) to keep the most frequent 50,000 
tokens. We built the N-gram language model’s vocabulary based on these local 
datasets’ training parts and kept every token we met. Based on the generic models’ 

5 https:// huggi ngface. co/ trans forme rs/ index. html.
6 https:// github. com/ mast- group/ OpenV ocabC odeNLM.
7 https:// github. com/ LiuFa ng816/ CugLM.
8 https:// github. com/ SLP- team/ SLP- Core.

https://huggingface.co/transformers/index.html
https://github.com/mast-group/OpenVocabCodeNLM
https://github.com/LiuFang816/CugLM
https://github.com/SLP-team/SLP-Core
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vocabulary, we counted the frequency of the OOV words of the local datasets, 
denoted as ‘unk rate’. These statistics are presented in Table 2.

5.4  Research questions and results

To evaluate our method, we conducted experiments to investigate the following 
research questions:

• RQ1: Performance Upper Bound The proposed method does not change the 
outputs of the generic and local models. It just learns to choose from the 
predictions. AdaComplete can achieve the upper bound of the performance 
if it can always select the suitable model, and we compute the upper bound 
performance in this research question.

• RQ2: Overall Method Performance We propose AdaComplete to improve the 
performance of the generic code completion model. So we conduct experi-
ments to compare AdaComplete with the baselines that do not utilize Ada-
Complete.

• RQ3: Contribution of Each Component AdaComplete utilizes two rules and 
one pointer model to make the choices. How much does each of them con-
tribute to the overall performance?

• RQ4: Difference among Pointer Models We propose two kinds of pointer 
models: the SVM and the RF with the corresponding reasons. What are their 
performances individually? What causes these differences?

• RQ5: Comparison with Fine-tuning To adapt the generic model to a specific 
domain, using fine-tuning is intrinsic. However, we analyze that applying 
fine-tuning is difficult because of lacking training data. Besides, fine-tuning 
consumes too much time. So we design experiments to prove our analysis.

5.4.1  RQ1: performance upper‑bound

To calculate the performance upper-bound of AdaComplete in each domain, we 
assume that we have a perfect pointer model which can make every choice cor-
rectly. Then we calculate the accuracy based on the perfect pointer model.

Table 3  Upper-bound statistics Generic only (%) Upper bound (%)

jFaceRec 71.33 87.11
jMonkeyEngine 62.16 80.62
CodeGeneration 64.51 79.66
j2me 61.23 80.19
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We report the upper-bounds of every dataset’s test set in Table  3. They are 
presented in the ‘UPPER BOUND’ column, while the second column shows the 
base deep code generator’s actual performance, that is, the performance only 
using the generic model.

According to Table 3, we find that if our pointer models are perfect, AdaCom-
plete can bring improvements by 20% on average. It is nearly one-third of the 
original accuracy performance. Besides, the portion of tokens in the charge of 
the pointer model is not small. Thus carefully designing and training the pointer 
models are necessary.

5.4.2  RQ2: overall method performance

We compare our model with several state-of-the-art code completion baselines, and 
the results are shown in Table 4. The first four rows are for the three baseline generic 
models and our local N-gram model. The following four lines are for our method, 
AdaComplete. The first one of them is for the upper-bounds reported in Table 3, and 
the others are for AdaComplete with different pointer models: SVM, and Random 
Forrest (RF).

According to Table 4, all of the implementations of AdaComplete have outper-
formed the generic baselines and the local N-gram model in accuracy on all the 
four domain-specific datasets.. Compared with the best method of the baselines, our 
improvements range from the percentage of 3 to 12. Considering that the generic 
model is based on a Transformer-XL without training tricks and AdaComplete 
can still beat the strong baseline of CugLM, the effectiveness of AdaComplete is 
convincing.

Specifically, we conduct experiments on cross-domain level datasets. We pre-
sent the results in column ‘generic.’ We find that our local N-gram model has rela-
tively poor performance for the projects in the generic domain compared with the 
generic DL-based model. Thus, the upper bound of AdaComplete is low. Moreover, 
the automatic pointer model limits the overall performance since they can not avoid 

Table 4  Comparisons against the state-of-the-arts

The bold numbers in the Table means ‘the best’

Accuracy on datasets

Generic (%) jMonkey-
Engine 
(%)

jFaceRec (%) CodeGen-
eration 
(%)

j2me (%)

Baselines Transformer-xl 72.12 62.16 71.33 64.51 61.23
BPE 70.29 59.12 69.89 57.56 43.23
CugLM 84.06 75.19 74.84 74.65 67.66
N-gram 40.26 65.68 81.35 63.99 61.47

AdaComplete UPPER-BOUND 74.86 80.62 87.11 79.66 80.19
AdaComplete(svm) 72.12 76.90 86.57 77.88 78.80
AdaComplete(rf) 72.12 78.43 86.93 77.97 78.84
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making mistakes (Tabel  11). So following the design principle of AdaComplete, 
we force the pointer to choose the generic DL-based model. So as reported in the 
chart, the performance of AdaComplete is equal to the generic DL-based model, 
transformer-XL.

5.4.3  RQ3: contribution of each component

In the overall picture, we have shown that our method is effective. We further evalu-
ate the performance of each component of AdaComplete (two rules and one pointer 
model) in this research question.

Each of the three components contributes to the final result of the accuracy, 
and we list the results in Table 5. They are (1) Rule 1: Whether the outputs are 
the same; (2) Rule 2: Whether the output from the generic model is OOV; (3) The 
Pointer Model. Except for Column ‘NN-ONLY,’ all the numbers are all the per-
centages of the successfully predicted tokens by the modules. Column ‘SAME’ 
is for Rule 1: If the predictions are the same, just give it to the user. Column 
‘UNK’ is for Rule 2: If the generic model thinks the prediction is OOV, just use 
N-gram’s output as the final prediction. Columns of ‘POINTER’ are for the three 
types of pointer models. As for Column ‘NN-Only,’ it is the percentage of the 
correct predictions if we do not use the pointer model and the N-gram language 
model. We list it here for comparison and hope that the maximum number of the 
pointer models on each dataset can exceed the numbers in ‘NN-ONLY.’ If so, the 
pointer model is effective, or it would be better to keep using the generic model’s 
predictions. Based on the results, we have the following analysis.

• Rule 1 contributed the largest proportion of the overall accuracy. Therefore, 
though add a rule makes AdaComplete complicated compared with simply 
utilizing the pointer model, it is still worthy. The pointer model can not avoid 
making mistakes. By adding Rule 1, we reduce much deadweight loss.

• The contribution of Rule 2 reveals AdaComplete’s ability to solve the OOV 
problem. Besides, it emphasize the importance of solving the OOV problem 
in code completion. Because it can increase the performance upper-bound of 
deep code completion models.

Table 5  Absolute accuracy contributed by the components

The bold numbers in the Table means ‘the best’

SAME (%) UNK (%) Pointer

SVM (%) RF (%) NN-ONLY (%)

jMonkeyEngine 47.37 12.03 16.49 19.03 14.94
jFaceRec 65.62 13.40 7.55  7.91 5.77
CodeGeneration 48.84 10.60 18.43 18.52 15.67
j2me 42.52 15.75 20.54 20.58 18.72
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• The contribution of the pointer model is greater than the original deep code 
completion model. The result not only proves that the pointer model is effec-
tive, but further confirm the existence of domain shift in code completion.

5.4.4  RQ4: difference among pointer models

We compare the pointer model’s choices horizontally and give some insights from 
several aspects. On all four datasets, RF performs better than SVM.

To further investigate the cause, we first calculate each label’s recall score of the 
pointer models, then we count the label proportions in the whole dataset. The recall 
scores are posted in Tables 6 and 7.

From Tables 6 and 7, we find that RF completely outperforms SVM on jMonkey-
Engine and jFaceRec. On CodeGeneration and j2me, although SVM outperforms 
RF on NN ONLY, it still behaves much worse on NGRAM ONLY, not to mention 
that the performance on NN ONLY is not a considerable advantage.

RF performs better on skewed data, which results in its higher accuracy than 
SVM. We investigate the label proportion of these datasets (please refer to Table 8. 
NGRAM ONLY is the minor label, much less than NN ONLY. SVM adapts to the 

Table 6  Statistics of recall on jMonkeyEngine and jFaceRec

The bold numbers in the Table means ‘the best’

jMonkeyEngine jFaceRec

NN ONLY 
(%)

NGRAM ONLY 
(%)

NN ONLY (%) NGRAM ONLY (%)

SVM 83.25 80.69 94.58 90.14
RF 90.48 87.80 98.06 96.90

Table 7  Statistics of recall on 
CodeGeneration and j2me

The bold numbers in the Table means ‘the best’

CodeGeneration j2me

NN ONLY (%) NGRAM 
ONLY (%)

NN ONLY (%) NGRAM 
ONLY 
(%)

SVM 93.31 83.84 95.46 83.17
RF 93.19 86.30 94.97 87.44

Table 8  Ratio of label NN 
ONLY and label NGRAM ONLY 

jFaceRec jMonkey-
Engine

CodeGeneration j2me

Ratio 
NN_ONLY

NGRAM_ONLY

2.47 2.37 3.45 5.83
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skewed data worse than RF, has lower recall values on the minor label, and performs 
worse than RF looking from the whole dataset.

5.4.5  Comparison with fine‑tuning

In practice, people use the fine-tuning technique to solve one domain’s domain 
shift, which is to keep training the generic model on the specific domain. However, 
there might not be enough data for fine-tuning for a specific domain. Besides, fine-
tuning requires too many computation resources and too much time, like training the 
generic models.

To prove the analysis above, we conduct the fine-tuning experiments on Trans-
former-XL. The training dataset is the same as the N-gram language model for fair. 
We kept training the Transformer-based code completion model until convergence. 
We present the final test accuracy in Table 9 and the time these experiments con-
sumed in Table 10. In Table 9, each column is for a domain. As for the rows, ‘Before 
FT’ is for Transformer-XL’s accuracy before fine-tuning. ‘After FT’ is the accuracy 
after fine-tuning. ‘AdaComplete’ is the accuracy of AdaComplete with RF as the 

Table 9  Accuracy comparison 
with fine-tuning

The bold numbers in the Table means ‘the best’

jMonkey-
Engine 
(%)

jFaceRec (%) CodeGen-
eration (%)

j2me (%)

Before FT 62.16 71.33 64.51 61.23
After FT 69.22 76.73 68.88 63.07
AdaComplete 78.43 86.93 77.97 78.84

Table 10  Time consumed comparison

jMonkeyEngine jFaceRec CodeGeneration j2me

AdaComplete 1 m 6 s 52.58 s 4 m 40 s 3 m 58 s
Fine-tuning 1 h 9 m 1 h 2 m 1 h 5 m 1 h 47 m

Fig. 3  Case 1 and Case 2
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pointer model. In Table 10, Row ‘Fine-tuning’ is for the time consumed fine-tuning 
the generic model. Row ‘AdaComplete’ is a summation for training the N-gram lan-
guage model and the RF pointer model. We report the RF pointer model’s training 
time because it consumes more time in training than SVM.

As seen from the results, it is apparent that the fine-tuned Transformer-XL has 
worse performance than AdaComplete and consumes much more time for train-
ing. So we can conclude that AdaComplete is more practical and effective than 
fine-tuning dealing with the domain-shift introduced by domains.

6  Case study

This section presents several real cases to analyze AdaComplete’s performance.
Figure 3 shows two cases, i.e., Case 1 and Case 2, on the domain of GoogleMap. 

The two cases show AdaComplete compensates the generic model’s domain adapt-
ability on the domain of GoogleMap by choosing the local model’s predictions.

Case 1 A Google Map object ‘map’ is created by the factory ‘gMaps,’ where 
‘gMaps’ is expected. ‘gMaps’ is a domain-specific entity, whose semantic cannot be 
captured by the generic model, thus is not correctly predicted. Instead, it conserva-
tively predicts the method parameter ‘m’ as the final result. Since the local model is 
trained on the specific domain source code, the semantic information of the domain-
specific entities can be successfully captured and correctly predicted. AdaComplete 
measures the generic model and the local models’ confidence score and chooses to 
trust N-gram. As a result, AdaComplete successfully predicts ‘gMaps’ here.

Case 2 The parameter list of method ‘create map’ needs to be filled. However, the 
generic model doesn’t know the parameter list. So it predicts the close parenthesis 
conservatively. On the contrary, the local model knows the parameter list and gives 
its prediction ‘getwidth.’ AdaComplete measures the generic model and the local 
models’ confidence score and chooses to trust N-gram. As a result, we successfully 
predict ‘getwidth’ here.

We present Case 3 in Fig. 4. This case shows that AdaComplete will follow the 
generic model when the token predicted is not domain-relevant.

Case 3 Case 3 is to set the loop length. The variable ‘m_vPoints’ is a Java Array. 
Because the method ‘size’ of a Java Array is usually called to set the loop length, 
the generic model predicts ’size.’ However, in the domain of this case, the method 
‘addElement’ is called more frequently than ‘size.’ Hence, the local model pre-
dicts ‘addElement.’AdaComplete measures the generic model and the local models’ 

Fig. 4  Case 3
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confidence score and chooses to trust the generic model. As a result, we successfully 
predict ‘size’ here.

In the above cases, we show that by applying AdaComplete, we can predict 
domain-specific tokens while keeping the generic model’s prediction when the cor-
rect prediction is not domain-specific.

7  Discussion

7.1  Method generalization

AdaComplete can integrate all kinds of generic models and improve their perfor-
mances as long as we find a model-specific metric to measure the model confidence. 
For transformer-based methods, in this paper, the Transformer-XL, and the other 
works (Ciniselli et al. 2021; Alon et al. 2020), we draw ‘HENT-TX’ as the model-
specific metric. For RNN-based methods Salton et al. (2017), we can use the entropy 
of its attention scores. For graph neural networks(Yang et  al. 2022; Wang and Li 
2021), we can use attention scores for those using self-attention, or involve the node 
feature distance for the others Vashishth et al. (2019).

Our method can also be applied to DL-based models with pre-training(Liu et al. 
2020b; Ciniselli et al. 2021) because pre-training is just a technique for training a 
deep code completion model. The measurements of their confidence scores are not 
different from the non-pre-trained code completion models.

7.2  Conservative strategy

We use the conservative strategy in our method and our experiment for strong proof 
of AdaComplete’s effectiveness. Our detail setups are:

• BOTH BAD We set the label, BOTH BAD, as the conservative recommendation 
strategy for AdaComplete. We choose not to give token recommendations when 
the models believe their recommendations are not likely to be correct. Previous 
works utilize the aggressive recommendation strategy in that they give recom-
mendations under any circumstances, regardless of the probability of making 
mistakes. AdaComplete can have better results using the aggressive strategy. But 
it still outperforms the baselines, which strongly proves its effectiveness.

Table 11  Pointer recall on 
generic domain

NN ONLY (%) NGRAM 
ONLY 
(%)

SVM 87.87 27.34
RF 78.61 33.47
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• Backbone Selection We use Transformer-XL as the backbone deep learning 
model rather than CugLM as a conservative experiment design. All the experi-
ments intended to prove the effectiveness of AdaComplete, which is a general 
framework for any deep learning models. So it is more persuasive that with 
the help of AdaComplete, a weaker model defeats a more robust model. In our 
experiments, AdaComplete with a weaker Transformer-XL outperforms all the 
baselines, which proves that AdaComplete works well.

7.3  Limitation and future work

The first threat of the effectiveness of AdaComplete is the effectiveness of the local 
model. Empirically, although the generic models have performance loss in a specific 
domain, the accuracy will not be too bad to use. And the pointer model does not 
need too many data points to train. So the threat to AdaComplete’s validity is the 
local model. According to Tabel 4, our local models, the N-gram models, perform 
worse than the generic models. Besides, the upper-bounds of AdaComplete in our 
experiments have not reached 100%, which is determined by N-gram’s performance. 
To improve AdaComplete’s performance, we need to design our local model better.

The second threat to the effectiveness of AdaComplete is the performance of the 
pointer model. Although AdaComplete is explicitly designed for domain-specific 
code completion tasks, we hope it could perform reasonably well with the generic 
DL-based model with the help of automatic pointer models. However, what we 
expect is not realized because of the poor performance of the auto-pointer models 
(see Table 11). We manually switch to the generic DL-based model for completion 
on the generic domain, but it is worth thinking about how to build pointer models 
that perform well in the generic domain.

7.4  Impact of data skew

Our well-designed features relieve the threat of data skew. In Table 6, we mention 
that data skew is serious in our datasets. Thus we apply more robust versions of 
SVM and RF to see the differences. The robust version of SVM is the weighted 
SVM Yang et al. (2007). They give each misclassified sample a price. The sample in 
the minority class receives higher prices than the majority class. The robust version 
of RF is proposed by Chen and Breiman (2004). They proposed to draw samples 

Table 12  Performance 
comparison for anti-data skew 
methods

jMonkey-
Engine 
(%)

jFaceRec (%) CodeGen-
eration 
(%)

j2me (%)

SVM-raw 76.90 86.57 77.88 78.80
SVM-balanced 77.20 85.97 75.81 77.54
RF-raw 78.43 86.93 77.97 78.84
RF-balanced 75.89 86.07 75.43 76.70
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from the majority class and the minority class separately to keep the data balance 
within a subset. The results are shown in Table 12. SVM-raw and RF-raw are the 
pointer models we use in AdaComplete. SVM-balanced and RF-balanced are their 
corresponding robust version.

The results show that the robust versions have little difference from their raw ver-
sions. Data skew does not have a destructive negative effect. Considering that the 
pointer models are simple statistical classifiers, we conclude that our hand-crafted 
features are separable and well-designed.

8  Related work

An N-gram-based code completion model uses the N-gram language model to 
estimate the output probabilities for all possible outputs. The basic N-gram lan-
guage models explicitly count the n-grams in the training set and use these counts 
during inference. The works using N-gram for code completion develop a series 
of methods to help N-gram language models to adapt to code nature. Raychev 
et al. (2014) trains an RNN to adjust the N-gram language model’s output prob-
abilities. Roos (2015) tries multiple smoothing methods to find the best one for 
code completion. Tu et  al. (2014) add a ‘cache’ component to help the N-gram 
language model to adapt to the ‘localness of source code’. Hellendoorn and 
Devanbu (2017) helps the N-gram language model with a much more expansive, 
multi-level notion of locality that is well-suited for modeling software.

A DL-based code completion model uses the deep learning method to esti-
mate the output probabilities for all possible outputs. Inherent from neural net-
works, deep code completion models have compact parameters, and large model 
capacity to learn from extensive program corpus effectively and efficiently Liu 
et  al. (2017, 2020b); Li et  al. (2018). Furthermore, because neural networks do 
well in modeling non-linear relations and mining from a larger dataset, deep code 
completion models perform better than those using statistical machine learning 
methods in general Karampatsis et al. (2020), not to mention the rule-based code 
completion methods.

Researchers have introduced many neural network architectures, training tricks, 
and program representations into code completion. Dam et  al. (2016) used Long 
Short Term Memory architecture to build a language model for code completion. 
Kim et al. (2020) introduced Transformer Vaswani et al. (2017) to code completion. 
To alleviate the big vocabulary issue in code completion, Li et al. (2018) introduced 
the copy mechanism Vinyals et al. (2015) that learns to copy tokens from the context 
as the output. Karampatsis et al. (2020) uses Byte-pair Encoding to split the tokens 
into sub-tokens. As for the program representation, Kim et al. (2021) tried to feed 
ASTs to a transformer for code completion, hoping the syntax information could 
help to improve the performance. When the pre-training technique is on-trend in the 
field of Natural Language Processing Devlin et al. (2018), Liu et al. (2020b) used 
this technique to improve the performance of deep code completion models further.
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9  Conclusion

We are the first to raise the issue that applying generic models to a specific domain 
harms the models’ performance in code completion. And we propose AdaComplete, 
a novel method integrating the generic model and the local model to reduce the loss 
by balancing the models’ predictions. The tests show that our method can signifi-
cantly increase the overall accuracy and beat the strong generic models. Further, we 
find that AdaComplete beat fine-tuning in both time and accuracy. Compared with 
fine-tuning, AdaComplete is more convenient and powerful.

In the future, we’ll try to improve the performance of both local and pointer mod-
els. We will investigate and design a more robust and light-weighted model for the 
local models to improve AdaComplete’s upper bound performance. We will design 
more meaningful and model-free features for the pointer models to improve the 
pointer models’ accuracy. Then we will introduce Online Learning, trying to build 
AdaComplete on the fly and regard a single project as a unique domain.
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